
Bijack: Breaking Bitcoin Network
with TCP Vulnerabilities

Shaoyu Li1(B), Shanghao Shi1, Yang Xiao2, Chaoyu Zhang1, Y. Thomas Hou1,
and Wenjing Lou1

1 Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
{shaoyuli,shanghaos,chaoyu,thou,wjlou}@vt.edu

2 University of Kentucky, Lexington, KY, USA
xiaoy@uky.edu

Abstract. Recent studies have shown that compromising Bitcoin’s peer-
to-peer network is an effective way to disrupt the Bitcoin service. While
many attack vectors have been uncovered such as BGP hijacking in the
network layer and eclipse attack in the application layer, one significant
attack vector that resides in the transport layer is largely overlooked. In
this paper, we investigate the TCP vulnerabilities of the Bitcoin system
and their consequences. We present Bijack, an off-path TCP hijacking
attack on the Bitcoin network that is able to terminate Bitcoin connec-
tions or inject malicious data into the connections with only a few prior
requirements and a limited amount of knowledge. This results in the Bit-
coin network topology leakage, and the Bitcoin nodes isolation.

We measured the real Bitcoin network and discovered that more than
1700 (27%) of the reachable Bitcoin nodes are vulnerable to our attack
whose physical locations are spread across the world. We evaluated the
efficiency and impacts of the Bijack attack in real-world settings, and the
results show that Bijack successfully realizes several fatal Bitcoin attacks
without too much effort.

Keywords: Bitcoin · TCP · Network security

1 Introduction

With a market capitalization of more than 534 billion US dollars (May 9th,
2023), Bitcoin is among the most successful cryptocurrencies. The fundamental
appeal of Bitcoin stems from its underlying design, the blockchain system, which
is characterized as a fully decentralized architecture [33] that relies on a unique
consensus protocol to ensure its security and immutability. Within this large and
decentralized system, tens of thousands of Bitcoin nodes have formed a global
peer-to-peer network overlaying upon the Internet. This peer-to-peer network,
commonly referred to as the Bitcoin network, enables Bitcoin nodes to transmit
transactions and blocks to each other and is critical to the fundamental consensus
security of Bitcoin [46].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
G. Tsudik et al. (Eds.): ESORICS 2023, LNCS 14346, pp. 306–326, 2024.
https://doi.org/10.1007/978-3-031-51479-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-51479-1_16&domain=pdf
https://doi.org/10.1007/978-3-031-51479-1_16


Bijack: Breaking Bitcoin Network with TCP Vulnerabilities 307

As a global and public infrastructure, the Bitcoin network has attracted var-
ious attacks from different perspectives that aim to disrupt the security and
performance of the Bitcoin system. For example, the eclipse attack aims to dom-
inate a victim node’s communication with the main network in order to isolate
it from the consensus [29,43]. The topology inference attack seeks to extract
the connection profiles of targeted nodes to manipulate their consensus status
[5,32,36]. Other network-based Bitcoin attacks include delay attacks [7,22] and
deanonymization attacks [2,5], for which Sect. 8 provides a detailed discussion.
In order to realize these network-based attacks, the attacker needs to manip-
ulate the P2P connections of the victim, which ultimately requires tampering
with the Internet functions that underpin the P2P network. To this regard, the
BGP hijacking attack [3] and its stealthier variant [43] exploit the vulnerabil-
ities of the BGP protocol to allow an autonomous system (AS)-level attacker
to redirect all traffic from/to a victim toward its malicious routers. More recent
connection manipulation attacks [15,16] leverage the positional advantage of the
routing-level attackers to eavesdrop, monitor, and tamper with specific Bitcoin
traffic.

Limitation of On-Path Attacks. The aforementioned connection manipula-
tion attacks are predominantly performed by an on-path attacker. This assump-
tion is impractical and often does not yield an attack reward comparable to
the potential cost. On-path attackers, who can intercept, monitor, and modify
network traffic trespassing them, are classified into two categories: routing-level
attackers, such as switches or routers, and AS-level attackers. However, in the
case of specific connection attacks, routing-level attackers are unlikely to cause
a significant impact on the overall network because they can only disrupt the
traffic passing through them, which affects only a small fraction of Bitcoin nodes.
As for AS-level attackers, although they have the ability to monitor and tamper
with a large volume of network traffic, they often refrain from doing so due to the
need to carefully weigh the costs and potential reputation impact of their mali-
cious actions against the potential gains of the attack. These large actors may
face serious commercial and regulatory consequences when they are detected.
Moreover, the open and dynamic nature of the Bitcoin network, whose topology
is subject to constant change, imposes an additional cost for the on-path attacker
to adapt and re-launch the attack.

Another commonality among existing network-based attacks is the overlook
of Transport Layer vulnerabilities of the Bitcoin network. Like most connection-
oriented network applications, Bitcoin relies on the TCP protocol for end-to-end
data transmission between nodes, utilizing TCP connections established through
the TCP three-way handshake. However, TCP itself has no authentication mech-
anism to build up secure channels between Bitcoin nodes and cannot verify the
integrity of transmitted Bitcoin data. This creates an opportunity for attackers
to manipulate Bitcoin connections by compromising the TCP connections and
substituting legitimate data with malicious data. Worse yet, the Bitcoin protocol
stack naturally transmits all traffic in plaintext, and Bitcoin does not employ
TLS (Transport Layer Security, [13]) to guarantee the security of the TCP con-



308 S. Li et al.

nections as in normal web apps like email and VoIP (Voice over Internet Protocol,
[27]). Therefore, anybody in the network is able to eavesdrop, capture, and ana-
lyze the TCP traffic of the victim nodes, opening up opportunities for off-path
attackers to conduct TCP-based manipulation attacks on the Bitcoin network.

Our Work. In this paper, we propose Bijack, a new off-path Bitcoin TCP
hijacking attack against the Bitcoin network. As an off-path attack, Bijack does
not require the attacker to have knowledge of on-path communication traffic
between Bitcoin peers, nor need any information about the internal operating
information of Bitcoin nodes. We exploit a TCP protocol vulnerability of the
Linux system [17,18,37] to devise our attack, which is based on a security flaw
of the mixed IPID assignment method in some versions of the Linux kernel. Our
attack can be conducted in three phases. First, the attacker discovers the victim
node by a flaw detection mechanism to identify whether the node is subject to
the TCP vulnerability we have mentioned. Second, the attacker identifies the
Bitcoin connections between the victim node and its peers. The Bitcoin connec-
tions will be tricked into downgrading the IPID assignment method from the
per-packet-based method to the globally 2048 hash-based method and a side
channel method based on the globally hash-based IPID assignments is utilized
to infer the three-tuple [victim node’s port number, peer’s IP address,
peer’s port number]. The attacker completely hijacks the connections by infer-
ring the sequence and acknowledgment numbers of the victim connections. After
a successful hijack, the attacker can terminate the TCP connections by sending
a forged TCP RST segment or injecting malicious Bitcoin data into the con-
nections to disrupt the Bitcoin system. As a result, the attacker can take over
the Bitcoin connections and send malicious transactions or blocks to the victim
nodes to break the Bitcoin consensus.

To show the potential impact of Bijack, we demonstrate two Bitcoin network
attacks mentioned earlier—the topology inference attack and the eclipse attack—
for which an off-path attacker can perform based on Bijack. For the topology
inference attack, the attack goal is to know the Bitcoin network topology around
the victim nodes. The victim nodes are tricked by the attacker to send the known
addresses to the attacker, helping it to detect the potential connections. Bijack
allows the off-path attacker to build connections with the victim nodes and send
forged network packets, and then infer the other connections of victim nodes. For
the eclipse attack, the attacker aims to isolate the victim node from the rest of the
Bitcoin network by surrounding it with malicious nodes, effectively controlling
all incoming and outgoing connections of the victim. With Bijack, the off-path
attacker who controls a swarm of malicious nodes (similar to the Sybil attack)
can continuously disrupt the benign connections established by the victim until
all of the victim’s connections are established with the malicious nodes.

Evaluation. We provided global network-wide measurement and surprisingly
found out that more than 27% of the total Bitcoin nodes are vulnerable to our
attack as of May 2023. We also implemented the Bijack attack in the real world
and evaluated the efficiency and impacts of the Bijack attack. For the topol-
ogy inference attack, when given the address list of 46262 potential peers, the



Bijack: Breaking Bitcoin Network with TCP Vulnerabilities 309

attacker was able to infer all connected peers of the victim node in 25.68 h. When
performing the eclipse attack, the attacker discovered all initial ten outbound
connections of the victim node in 168min and successfully isolated the victim
node in 11.6 h. Finally, we propose practical countermeasures (Sect. 7.2) from
the perspective of the network and Bitcoin system to detect and defend against
the Bijack attack.

In summary, we make the following contributions:

• To the best of our knowledge, this is the first work that focuses on the TCP
vulnerabilities of the Bitcoin network. We identify this unique attack vector
and its security impacts imposed on the Bitcoin network.

• We propose Bijack, an off-path Bitcoin TCP attack that only requires very
little prior knowledge of the victim nodes. The attack can be launched by any
malicious party within the Bitcoin network, resulting in a complete hijacking
of the communication session between victim nodes. Bijack can lead to fur-
ther catastrophes results including topology leakage, eclipse, and even double-
spending.

• We measured all the reachable nodes from the Bitcoin network and found that
more than 27% of them are vulnerable to our attack, calling for an urgent
need to fix this vulnerability. We implemented Bijack attack in real Bitcoin
networks by performing the topology inference and eclipse attack, and the
experiment results confirm the efficiency and effectiveness of our attack.

2 Background

2.1 Bitcoin Network Formation

As a peer-to-peer network, Bitcoin requires each node to maintain a list of IP
addresses of potential peers. This list stored in the local addresses database
is initially acquired from a public DNS server, and additional addresses are
exchanged among connected peers. Each Bitcoin node pseudo-randomly selects
peers from the list to build unencrypted TCP connections with them. By default,
each Bitcoin node establishes 10 outbound connections (including 2 block-relay
connections) and accepts up to 117 inbound connections on TCP port 8333.

Nodes request connected peers’ known addresses by sending GETADDR
messages and the peer responds with ADDR messages containing up to (but
necessarily) 1000 known node addresses. In addition, most nodes will unsolicit-
edly propagate their own addresses in ADDR messages to their peers when
building new connections. Currently, in order to avoid topology leakage, each
node can only propagate at most 1000 addresses per day [34].

2.2 TCP Vulnerability

The TCP vulnerability revealed in 2020 [37] enables an off-path attacker to moni-
tor TCP connections of the victim hosts when they run the Linux kernels prior to
version 5.17 [17,18]. In this attack, the attacker first pretends to be a router and



310 S. Li et al.

sends a forged ICMP “Fragmentation Needed” error message [38] to the victim
node in order to trigger it to downgrade the IPID assignment of the victim con-
nection from the per-socket-based method to the insecure hash-based method.
For the hash-based method, the node uses a total of 2048 (11 bits) IPID counters
determined by IPIDcounter = HASH(sourceIP, destIP, protocol, Boot key) to
assign IPIDs for its IP packets. However, this method has been shown to be inse-
cure [17] as the hash collision space is too small and an attacker is able to use
many IP addresses and its desired protocol to trigger a hash collision. For exam-
ple, the attacker can achieve this by using ICMP protocol and trying different
destination IP addresses, as shown in Eq. (1):

hash(victim node IP, peer IP, TCP,Boot key)
= hash(victim node IP, attacker IP, ICMP,Boot key)

(1)

In practice, the attacker can send ICMP echo request messages with its IP
addresses and observe the IPID of the returned ICMP echo reply messages. If one
IP address collides with the targeted TCP connection, the attacker can observe
a non-linear IPID increment in its received ICMP messages because the victim
connection and the attacker’s ICMP connection are using the same IPID counter.
As a result of this hash collision, the attacker is able to monitor the IPID changes
in the victim’s TCP connection by monitoring its own ICMP connection. More
details about IPID can be found in AppendixA.1.

3 Bijack: Hijacking Bitcoin TCP Connections

3.1 Attack Model

The goal of our Bijack attack is to hijack the Bitcoin connections of the victim
node. Figure 1 shows the attack model of Bijack, in which three types of nodes
are involved, including the victim node V , the list of peers connected to the
victim P = {p1, p2, · · · , pn}, and an off-path attacker A.

Fig. 1. The off-path attack model



Bijack: Breaking Bitcoin Network with TCP Vulnerabilities 311

We assume the off-path attacker is unable and does not necessarily need
to monitor any inbound or outbound network traffic of the victim node. The
attacker also has no information about any internal operating parameters and
configurations of the victim node except the victim node’s IP address, which is
used as the public identifier of the victim node. We assume the attacker is able
to craft and send malicious IP packets to the network, as well as possessing many
IP addresses, following the convention of the existing Bitcoin network attacks
[19]. We assume attacker A has the ability to send forged TCP segments, ICMP
messages, and Bitcoin messages to victim V, without needing to manipulate the
ASes (Autonomous Systems) to relay the forged packets, as over a quarter of
ASes do not discard packets with spoofed source addresses in their networks [31].
In practice, any node in the Bitcoin network, such as a Bitcoin mining node or
a light node, can become an attacker.

3.2 Detailed Procedures of Bijack

Phase-1: Victim Detection. Discovering vulnerable Bitcoin nodes that deploy
a vulnerable Linux kernel is necessary for an off-path attacker to perform both
node-level and network-level attacks because the attacker aims to detect the
Bitcoin connections of the vulnerable nodes. Figure 2 illustrates the workflow of
detecting the vulnerable nodes from the Bitcoin network.

Fig. 2. Discovering a victim node

The attacker first establishes a Bitcoin connection with the target node to
test if it is vulnerable. The attacker attempts to downgrade the IPID assignment
method of the Bitcoin connection by sending an ICMP “Fragmentation Needed”
message to the tested node. Only the vulnerable Bitcoin node will reply to the
attacker with Bitcoin messages whose DF field changed from one to zero. After
monitoring this, the attacker conducts the hash-collision as we have described
in Sect. 2.2, and if it succeeds, it confirms that the current node is a vulnerable
one.



312 S. Li et al.

Fig. 3. Finding the victim’s peer IP address

Phase-2: Connection Detection. For each victim node, the attacker attempts
to reveal the details of the victim’s existing Bitcoin connections established with
peers. Each Bitcoin connection can be treated as a four-tuple vector, i.e., [vic-
tim node’s IP address, victim node’s port number, peer’s IP address,
peer’s port number]. The attacker only knows the victim node’s IP and it
will infer the other three components.

Step 1: Finding Victim’s Peer IP Addresses. The workflow of this IP detec-
tion process is shown in Fig. 3. To begin with, the attacker sends GETADDR
messages to the victim node and collects the addresses in the replied ADDR
messages, which may contain the connected peers as described in Sect. 2.1. Then
each IP address in the ADDR messages will be tested to see if it connects to the
victim nodes. The attacker sends a forged ICMP “Fragmentation Needed” mes-
sage with the tested IP address to the victim node. If the victim node does have
a connection with the tested IP, the connection will be triggered to downgrade
the IPID assignment to the hash-based method, which will be detected by the
attacker through hash-collision mentioned in Sect. 2.2.

Step 2: Inferring Port Numbers of the Victim and Peers. In this step, the
attacker infers the port numbers between the victim and its peers. The attacker
will first assume one node uses the destination port (typically 8333, while it
can be detected by network scanning) and infer the other one’s port number. If
unsuccessful, swap the assumption. As a bonus, after the port inferring process,
the attacker obtains knowledge about whether the current Bitcoin connection is
inbound or outbound.

The workflow of port inference is illustrated in Fig. 4. For each of the identi-
fied peers, the attacker starts with continuous monitoring of the IPID increment
between the victim node and the peer. The attacker can do so by continuously
sending hash-collided ICMP messages (already succeed in the previous phase) to



Bijack: Breaking Bitcoin Network with TCP Vulnerabilities 313

Fig. 4. Inferring the port numbers between the victim and its peer

the victim and observing the returned messages. To infer the port number, the
attacker sends forged TCP SYN/ACK segments to victim nodes with different
port numbers across the range (from 1024 to 65535). When the port number is
correct, the victim will send a TCP Challenge ACK segment [41] to the peer,
and if not, the victim responds with a TCP RST segment to the peer with a 0
value of the IPID [1,30]. Because this TCP Challenge ACK segment uses one or
more additional IPIDs shared between the victim and attack connections, the
attacker can observe a non-linear IPID increment, which is the indicator of the
success of our inferring process. Note that this inferring process can be finished
in a short time, we do assume there is no other TCP connection between the
victim and its peer.

Fig. 5. Inferring acceptable sequence and ACK numbers

Step 3: Inferring Sequence Number and Acknowledgment Number.
The attacker infers the exact sequence number and acceptable acknowledgment
number in order to gain full knowledge of the victim’s connection. The attacker
achieves this in serial steps including first inferring an acceptable sequence



314 S. Li et al.

number, then an acknowledgment number located in the Challenge
ACK window, and finally the exact sequence number as well as the accept-
able ACK number.

The workflow and related terms of inferring an acceptable sequence number
and an ACK number located in the Challenge ACK window are illustrated in
Fig. 5. To infer an acceptable sequence number, the attacker sends the forged
TCP RST segments with their guessed sequence numbers to the victim node,
which will respond with a Challenge ACK segment to its peer if and only if
the guessed sequence numbers fall in an acceptable window. Similar to the pre-
vious step, this Challenge ACK segment triggers a non-linear increment on the
shared IPID counter between the attacker and the victim node, detectable by the
attacker as the signal of finding an acceptable sequence number. Then with this
acceptable sequence number, the attacker can infer an ACK number located in
the Challenge ACK window (ranging from 1G to 2G [6,9,10]) by sending forged
ACK segments and monitoring the IPID increment in the same fashion [41]. After
that, the attacker infers the exact sequence number with a well-known method
[17] as to sending forged ACK segments to the victim with decreasing sequence
numbers from the acceptable sequence number and monitoring the reply rate of
the TCP segments (or the IPID non-linear incremental rate). In the beginning,
there is a burst of challenge ACK segments sent by the victim at the limited
speed of 500 ms per segment by the protocol design of TCP. Once the sequence
number reaches the lower bound, the sequence number is the exact one and the
victim nodes will send ACK segments to its peer without any speed limitation.
When inferring the acceptable ACK number, the lower bound of the challenge
ACK window can be inferred in the same way and then the attacker uses it
to calculate the sequence number of the first unacknowledged octet (the lower
bound value adding 2G), which can be used with the known typical size of the
send window to finally calculate the acceptable ACK number.

Phase-3: Hijack and Manipulation. With the correct inference of the under-
lying TCP layer information of the victim’s Bitcoin connections, the off-path
attacker is able to send spoofed traffic to the victim nodes to influence the vic-
tim’s normal Bitcoin activities. The connections could be forcefully terminated
by the attacker, using the knowledge of either the TCP or Bitcoin protocol.
Moreover, the attacker can inject malicious Bitcoin data including fake transac-
tions and blocks into the connections, which will disrupt the victim node from
understanding the blockchain ledger, further influencing the integrity and sta-
bility of the Bitcoin consensus. We will explore these vulnerabilities in the next
two sections.

4 Compromising Bitcoin Network Nodes

Hijacking Bitcoin connections can pose significant security risks to both Bitcoin
nodes and the Bitcoin network. In this section, we have demonstrated two Bit-
coin node manipulation attacks based on Bijack: (i) Bitcoin topology inference



Bijack: Breaking Bitcoin Network with TCP Vulnerabilities 315

and (ii) eclipse attack. We will demonstrate how they are launched and their
consequences on the Bitcoin network.

4.1 Bitcoin Topology Inference

Compared to the previous Bitcoin topology inference attack [5,12,28,32,36],
Bijack can directly infer the inbound and outbound connections of the victim
node through message feedback directly obtained from the network traffic with-
out the requirement of collecting and analyzing detailed Bitcoin transactions or
blocks. The attacker can detect all or at least most of the inbound and outbound
connections of a targeted node.

In practice, to infer more connections, the attacker can repeatedly request
ADDR messages as long as it does not exceed the limitation set by the Bitcoin
system to gain as many potential peer IP addresses as possible. This allows the
attacker to build up a superset of all the IP addresses it receives, up to 1,000
addresses per day. According to Bitcoin’s design rules, the victim will randomly
select peers to establish connections from their known IP addresses, which are
highly likely to be within the IP superset, provided that the superset is large
enough.

The attacker acquires the topology information of the victim nodes by launch-
ing this attack, which can be further exploited to conduct more severe Bitcoin
attacks. For example, the attacker can identify the most connective nodes as the
key or super nodes, and place corrupted nodes in these key locations or attack
the super nodes to disrupt data transmission in the network. The attacker may
even infer the complete topology of a local (e.g. in a certain network domain)
or global Bitcoin network through mathematical modeling and analyzing the
inbound and outbound relationships of the nodes [32], leaving space for the
attacker to conduct the eclipse attack that isolates the victims. Moreover, the
attacker is able to perform the 0-confirming double-spending attacks on the vic-
tim. After inferring the connections of the victim merchant, the attacker sends
the double-spend transaction only to the victim’s peers and sends others the
legal transaction. The merchant will confirm the double-spending transaction
after receiving it from most of its peers, while the legal transaction will be
selected in the blockchain.

4.2 Eclipse Attack

The eclipse attack is a severe Bitcoin attack that aims to isolate the victim
nodes from the rest of the network. It can render the victim nodes vulnerable to
a double spending attack because the attacker controls the propagation of trans-
actions to the victim nodes. It can also waste the mining power by manipulating
the victim’s view of the blockchain. Moreover, if the attacker is able to isolate
a large number of Bitcoin nodes, the whole Bitcoin network may be partitioned.
Unfortunately, Bijack can help the attacker to accomplish this in the following
way.



316 S. Li et al.

The attacker first continuously sends Bitcoin ADDR messages to the victim
node with multiple malicious IP addresses controlled by it. Because the current
Bitcoin protocol lets the node accept all the received IP addresses without any
verification, the attacker can gradually pollute the local IP database of the vic-
tims by increasing the portion of malicious IP addresses, from where the victim
nodes establish outbound connections. In practice, to increase the number of
nodes stored in the victim’s database, the attacker can inject IP addresses with
different prefixes to circumvent the built-in address discarding mechanism in the
database—the database allocates a limited quota for IP addresses with the same
prefix, and any exceeding ones will be discarded [29,43].

After this, the attacker attempts to manipulate all the victim node’s con-
nections through the Bijack. Once the attacker finds that the victim node is
shut down and restarted, it immediately occupies all the inbound connections
with its controlled IP addresses. This is achievable because the Bitcoin system
does not specify its nodes to verify or authenticate the inbound connection
requests. Moreover, existing work has shown that the Bitcoin nodes may restart
for several reasons such as software updating, power failure, and DDoS attacks
[11,40,42,44]. For the outbound connections, even if the attacker has polluted
the local addresses database of the victim node, the benign IP addresses still
constitute a large fraction and the victim may still establish connections with
them. To terminate these benign connections and allow the attacker to fully con-
trol the victim’s connections, the attacker needs to first detect and hijack all the
benign connections with Bijack. The attacker then impersonates the correspond-
ing peers of these connections to disrupt them by either sending forged TCP
RST segments to trigger connection termination or sending malicious Bitcoin
messages to the victim nodes, which causes ban scores of the benign peers to
increase until they reach 100, resulting in a one-day blacklisting [15,16].

As a result, the attacker disconnects all the benign nodes from the victims
and fully controls all their inbound and outbound connections, accomplishing
the eclipse attack.

5 How Vulnerable Is Bitcoin to Bijack?

Evaluating the impact of our Bijack attack requires a good knowledge of the
vulnerable nodes in the Bitcoin network. In this section, we conduct a measure-
ment of the Bitcoin network to explore the number of vulnerable nodes as well
as their mining power in the network and analyze Bijack potential impact.

5.1 Measurement on Real Bitcoin Network

We utilized one scanner Bitcoin node running Bitcoin Core version v24.99.0, with
the IP address of 38.68.237.175. Our scanner node was installed with Ubuntu
18.04 (Linux kernel version 4.15) and was capable of sending ICMP messages to
other nodes using spoofed IP addresses with the Python Scapy package.



Bijack: Breaking Bitcoin Network with TCP Vulnerabilities 317

The victim detection phase (following Sect. 3.1) was carried out on the entire
Bitcoin network for 10 days, from April 27th, 2023, to May 7th, 2023 (the detailed
procedure is shown in AppendixA.2). During this time period, we discovered
and successfully established Bitcoin connections with 6405 Bitcoin nodes and
we found that 27.14% of connected nodes (1738 nodes) are vulnerable to the
Bijack. We show our experiment results in Table 1, in which we present the geo-
location, the number of vulnerable and reachable nodes, as well as the total
scanning time.

Table 1. The top ten countries with the highest number of vulnerable nodes

Location Victim Clients Total Clients Scan Time (min)

USA 332 1200 711.5

Germany 300 726 396.9

Netherlands 119 264 142.3

France 102 266 148.4

Finland 95 210 113.1

Canada 65 195 111.6

Singapore 53 114 61.0

United Kingdom 46 137 80.6

Japan 43 83 43.8

Switzerland 43 135 78.5

We measured the vulnerable mining nodes from the Bitcoin network during
the same time period. We collected all the nodes that first relay new blocks,
considering them as gateways of mining pools. We also collected the IP addresses
of the mining devices by scanning the IPv4 network. We found that over 90% of
the vulnerable nodes are associated with mining activities, with approximately
40% being mining nodes and the remaining portion belonging to mining pool
gateways.

5.2 Bitcoin Impact Analysis

Our measurement found more than 27% Bitcoin nodes are vulnerable to our
attack, spreading across different geographical locations. Therefore, these nodes
are directly exposed to the threats we have mentioned in the previous section
such as topology leakage, eclipse, and even double-spending. From the network’s
perspective, the attacker can cause more severe consequences as it can partition
the whole Bitcoin network considering that 27% is a considerably large fraction
and over 90% of the detected victim nodes belong to the mining nodes or mining
pool nodes. These nodes possess a significant amount of computational power
within the Bitcoin system. After partitioning the network, the attacker gains



318 S. Li et al.

control over these nodes, and its computation power increases significantly, giving
him a huge advantage to perform the selfish-mining attacks [14,21,35], in which
the attacker may strategically conceal and release newly mined blocks to realize
unfair mining gain when the attacked-controlled mining power exceeds a certain
threshold β. Assuming the attacker’s released block wins the fork competition
of 50% chance, the threshold β becomes 25%. There is a non-negligible chance
that the mining power of the 27% victim population may well exceed 25% of the
total.

6 Experiment and Evaluation

We conducted the topology inference attack and eclipse attack on the real
Bitcoin network to evaluate the effectiveness of Bijack. By launching the topology
inference attack, we can infer all of the connected peers of the victim nodes (from
the list of 46262 potential peers) in 25.68 h. By launching the eclipse attack, we
isolate the victim node in 11.6 h.

Ethical Considerations. In order to prevent any potential harm or negative
repercussions on the Bitcoin network and market, we only conduct the vulnerable
detection phase of our attack without the following steps, which will jeopardize
the operation of Bitcoin. For these steps that may cause actual harmful conse-
quences, we implemented them only on our own machines. Our experimental
activities do not pose any threat to other Bitcoin nodes. We did not send a large
number of IP packets in the public Bitcoin network in order to not increase the
burden on the network, and we maintain confidentiality regarding the list of
nodes that are susceptible to the vulnerability.

6.1 Experiment Setup

We deployed one victim node with Bitcoin Core version v24.99.0 on the Amazon
cloud by using an AWS EC2 virtual machine with Ubuntu 20.04 (Linux kernel
version 5.5) located in the US East. Before our experiment, we ran the victim
Bitcoin client on the node for 65 days to get it to fit into the environment of the
Bitcoin system. We deployed twenty attacker nodes with Bitcoin Core version
v24.99.0 equipped with Ubuntu 20.04 (kernel version 5.5). The prefix of the
IP addresses for these nodes is 38.68.237.0/24. We own over 5000 addresses
with the prefix of 71.178.0.0/16, 96.231.0.0/16, and 38.68.160.0/20 for hash
collision and eclipse attack.

6.2 Experimental Results

Bitcoin Topology Inference Attack. We first conducted a 110-day experi-
ment to evaluate the effectiveness of our peer detection process, i.e., the number
of victim’s connections that can be inferred from the address list collected from
the ADDR messages. In our experiment, we continuously sent GETADDR



Bijack: Breaking Bitcoin Network with TCP Vulnerabilities 319

messages to the victim node each day and collected the addresses returned by
the victim nodes. The experimental results are shown in Fig. 6. Our experiment
shows that after collecting addresses for a continuous period of 110 days, the
attacker obtains the list that contains over 70% of the victim’s outbound con-
nected peers and over 50% of inbound connected peers. In total, the list contains
46242 addresses and 57 of them are connected peers. Subsequently, we executed
our attack based on the list collected before and assessed the efficiency of the
Bijack-based topology inference attack. The experimental results are shown in
Fig. 6(b). In total, it took us 25.68 h to find all 57 connections from the 46242
addresses. More specifically, the average time cost to examine one address in the
list was 39.98 s and the average time cost to discover one connected peer was
23.94 s.

Fig. 6. Topology Inference Attack Results

Fig. 7. Eclipse Attack Results



320 S. Li et al.

Eclipse Attack. We first scanned the whole Bitcoin network and found 5222
active nodes on May 10th, 2023. Then we checked each node to detect if the
victim node built a connection with it. We used 5000 addresses (controlled by
us) to conduct the hash-collision with each node and if we fail, we consider that
node does not have a connection with the victim node. The average time cost
of checking an unconnected node is 39.98 s by attempting all the 5000 addresses.
For connected nodes, we utilized an average of 3461 addresses to discover their
connection with a time cost of 27.40 s. In total, we spent 168min finding all ten
outbound connections of the victim, and Fig. 7 illustrates the results of discov-
ering all outbound connections.

Afterward, we kept sending ADDR messages to the victim nodes to inject
the malicious IP addresses into the victim’s database. Each time we sent 1000 IP
addresses to the victim node in 6 TCP segments with a total payload of 17495
bytes. Finally, we sent TCP RST segments or fake Bitcoin blocks (ban-score-
based method) to reset the Bitcoin connections. We disrupted each outbound
connection until all of the connections were established to our attacker nodes.
Figure 7(b) illustrates the relationship between the number of injected malicious
IP addresses and the number of required hijacked connections to complete the
attack. We found that the number of required hijacked connections decreases
when the number of polluted IP addresses increases and in general the ban-score-
based method requires fewer hijacked connections than the TCP RST-based
method. In our experiment, the average timing overhead for resetting a Bitcoin
connection was 163 s for the TCP RST-based method and 247 s for the Bitcoin
ban-score-based method. Specifically, when 200 IP addresses were injected into
the database, we used 11.6 h to break the required 248 connections to accomplish
our attack by sending TCP RST segments.

7 Discussion and Countermeasures

7.1 Discussion

The Bitcoin system transmits transactions and blocks in plaintext with the
underlying TCP protocol and does not offer any encryption and authentication
mechanism in order to reduce the payload of the network. Many other blockchain
networks have similar properties including Litecoin [39], and Ripple [4]. Unfor-
tunately, this makes them vulnerable to Bijack as the prerequisite requirement
for successfully launching our attack is that the network traffic is not encrypted.
For the blockchain networks that offer authenticated and encrypted traffic such
as Ethereum [8], our attack fails to break their systems.

7.2 Countermeasures

The Bitcoin system may use the following feasible countermeasures to defend
itself against Bijack.

Deploy a Customized Designed Intrusion Detection System. Bijack
introduces some extra abnormal traffic to the system that can be detected by an



Bijack: Breaking Bitcoin Network with TCP Vulnerabilities 321

intrusion detection system (IDS). For example, the IDS can monitor the IPID
increment of the Bitcoin connections, or carefully check the ICMP “Fragmenta-
tion Needed” messages.

Refuse Unsolicited ADDR Messages. The node could choose to refuse the
unsolicited ADDR messages with a large number of IP addresses, especially from
incoming peers. This will prevent attackers from polluting the victim’s address
database, making it difficult to carry out an Bijack-based eclipse attack.

Encrypt the Traffic. If Bitcoin traffic is transmitted using encryption, our
attack’s impact will be significantly reduced. It would be challenging for attackers
to send spoofed messages. Considering the impact of encryption on network
performance, we can allow nodes to choose whether to encrypt based on their
own circumstances.

Using Tor Network. Our attack cannot target the Tor network because our
attack is based on the IPv4 network and we first need to identify the victim’s IP
address. Tor is anonymous by design and most existing Bitcoin attacks are not
effective against the Tor network. Therefore, using the Tor network can mitigate
network attacks.

8 Related Work

Bitcoin Network Attacks. The security of the Bitcoin network has gained a
lot of attention from the academic community. The well-known eclipse attack [20,
29] exploits the vulnerabilities of Bitcoin’s built-in peer-selecting procedure by
injecting the address database of victims with the attacker-controlled to isolate
the victim Bitcoin nodes from the major Bitcoin network. BGP hijacking attack
[3] and EREBUS attack [43] exploits the advantage of an AS-level attacker to
delay messages received by nodes or partition nodes. The Topology Inference
attacks [5,12,28,32,36] infer connections by analyzing the transmitted Bitcoin
data or timestamps. On-path Bitcoin network attacks [15,16] hijack the Bitcoin
connections to disrupt the operation of the system. The delay attack [7,22,45]
exploits network timing as the attack vector and impedes the reception time of
certain Bitcoin messages of the victim nodes. The data received and stored by
the victim node differs from that of the remaining nodes in the network within
a certain period, resulting in wasted computing power and defaming the victim
node to be susceptible to double-spending attackers. Lastly, the deanonymization
attack [2,5] reveals the real IP addresses of the victim nodes by analyzing the
Bitcoin traffic, making every transaction associated with the victim’s IP address
public.

Off-Path TCP Vulnerabilities. Side-channel attack in the challenge ACK
mechanism [9,10] can infer the TCP utilization for one specific connection and
then hijack it by inferring its sequence numbers and ACK numbers. Global IPID
counter vulnerability is exploited to infer TCP connections and help attackers
inject malicious data into the TCP connections to poison the HTTP and Tor



322 S. Li et al.

traffic [23–26]. Mixed IPID assignment off-path attack [17,18] leverages a new
side channel vulnerability to downgrade the TCP connections of IPID assign-
ment to the 2048-hash-based method, which helps the attacker infer the source
port number and the destination port number of the connection, inferring the
sequence numbers and the acknowledge numbers to hijack the TCP connection.

9 Conclusion

In this paper, we propose Bijack, a new off-path Bitcoin TCP hijacking attack
against the Bitcoin network by exploiting a TCP protocol vulnerability of the
Linux system. We also demonstrate two Bitcoin network attacks—the topology
inference attack and the eclipse attack—to show the impact of our attack on the
Bitcoin network. We measure the number of vulnerable nodes in the real Bitcoin
network and analyze the influence of our attack. We evaluate the efficiency of
our attacks. Our experiments show that the off-path attackers can successfully
carry out the topology inferring attack and eclipse attack effectively.

Acknowledgement. This work was supported in part by the US National Science
Foundation under grants 2247560, 2154929, 1916902, and 2247561.

A Appendix

A.1 IPID Assignment

IPID Assignment. The identification field (IPID) in the Internet Protocol (IP)
serves as a unique identifier for each IP packet and it occupies 16 bits in the IP
packet. The IPID is assigned by the sender to aid in assembling the fragments of
a datagram because IP datagrams may be fragmented into multiple fragments for
transmission over the network during the transmission process. The generation
of the IPID can employ different algorithms or strategies, but it must be unique
within the sender’s context. In certain versions, Linux employs a mixed IPID
assignment method for packets [1]. There are two fundamental IPID assignment
policies: the per-socket-based IPID assignment method and the 2048-globally-
hash-based IPID assignment method, the former being specific to socket-based
protocols such as TCP and UDP.

Per-Socket-Based IPID Assignment. This policy is specifically used for
socket-based protocols such as TCP and UDP. A unique random value is ini-
tialized for each connection, and the counter is incremented by 1 each time it
is used for transmitting a packet. This random counter makes it difficult for
off-path attackers to infer the IPID value.

Hash-Based IPID Assignment. It involves assigning the IPID based on a
hash counter. Linux has a total of 2048 hash counters, and the IPID is selected
from one of these counters based on the hash value of four variables: the source
IP address, destination IP address, the protocol number of the packet, and a



Bijack: Breaking Bitcoin Network with TCP Vulnerabilities 323

random value generated by the Linux system. After the IPID value is copied
from the selected counter, the counter is incremented by a uniform distribution
value between 1 and the number of system ticks that have elapsed since the last
packet transmission using the same counter.

Linux uses the Don’t Fragment (DF) flag in the IP protocol to differentiate
between the two methods. Normally the TCP and UDP use per-socket-based
IPID assignment and the DF’s value is one. For other network protocols (like
ICMP), the DF is set as 0. For TCP, DF is set as 1 for TCP non-RST segments,
enabling the MTU discovery (PMTUD) mechanism and signaling the use of the
per-socket-based IPID assignment method, which is considered more secure. The
IP examines the DF flag value set by the TCP protocol. If DF is 0, the hash-
based IPID assignment method is used. If DF is 1 and the packet is not for a
TCP SYN/ACK segment with both SYN and ACK flags set to 1 (assigned IPID
of 0), the IP assigns the IPID using the per-socket-based method.

A.2 Bitcoin Network Measurement Procedure

We first scan all connectable nodes in the network based on the method in [47].
Then, we establish Bitcoin connections with these nodes for further testing. To
reduce the bandwidth load on our node, we test only one Bitcoin node at a
time and establish a connection with only that one Bitcoin node. Initially, we
send malicious ICMP “Fragmentation Needed” messages to attempt to clear
the DF flag. As for hash collision, we first observe the average rate m at which
the tested node sends Bitcoin information to our node and the average IPID
increment k between each message. Then, our scanner node sends forged ICMP
messages with different source IP addresses to the tested node. For each source
IP address, we will send the forged packets at a rate of n∗m for the time period
of 1/m. If we found that the IPID of a received Bitcoin message increased by
n ∗ m + k compared to the most recent previous one, we considered the tested
node collided. To minimize errors caused by network latency or the randomness
of the IPID increment, when we observe the IPID increment value in the range
of n ∗m+ k, we repeat the test with the source IP address used for the collision
to verify whether the collision really occurred.

References

1. Alexander, G., Espinoza, A.M., Crandall, J.R.: Detecting TCP/IP connections via
IPID hash collisions. Proc. Priv. Enhancing Technol. 2019, 4 (2019)

2. Apostolaki, M., Maire, C., Vanbever, L.: Perimeter: a network-layer attack on
the anonymity of cryptocurrencies. In: Borisov, N., Diaz, C. (eds.) FC 2021, Part
I 25. LNCS, vol. 12674, pp. 147–166. Springer, Heidelberg (2021). https://doi.org/
10.1007/978-3-662-64322-8 7

3. Apostolaki, M., Zohar, A., Vanbever, L. Hijacking bitcoin: routing attacks on cryp-
tocurrencies. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 375–392.
IEEE (2017)

https://doi.org/10.1007/978-3-662-64322-8_7
https://doi.org/10.1007/978-3-662-64322-8_7


324 S. Li et al.

4. Armknecht, F., Karame, G.O., Mandal, A., Youssef, F., Zenner, E.: Ripple:
overview and outlook. In: Conti, M., Schunter, M., Askoxylakis, I. (eds.) Trust
2015. LNCS, vol. 9229, pp. 163–180. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-22846-4 10

5. Biryukov, A., Khovratovich, D., Pustogarov, I.: Deanonymisation of clients in bit-
coin P2P network. In: Proceedings of the 2014 ACM SIGSAC Conference on Com-
puter and Communications Security, pp. 15–29 (2014)

6. Borman, D., Braden, B., Jacobson, V.: RFC 7323: TCP extensions for high perfor-
mance (2014)

7. Boverman, A.: Timejacking & Bitcoin. Culubas Blog (2011)
8. Buterin, V., et al.: A next-generation smart contract and decentralized application

platform. White Paper 3, 37, 2–1 (2014)
9. Cao, Y., Qian, Z., Wang, Z., Dao, T., Krishnamurthy, S.V., Marvel, L.M.: Off-

path TCP exploits: global rate limit considered dangerous. In: USENIX Security
Symposium, pp. 209–225 (2016)

10. Cao, Y., Qian, Z., Wang, Z., Dao, T., Krishnamurthy, S.V., Marvel, L.M.: Off-
path TCP exploits of the challenge ack global rate limit. IEEE/ACM Trans. Netw.
26(2), 765–778 (2018)

11. BitcoinCore: CVE-2018-17144. https://bitcoincore.org/en/2018/09/20/notice/.
Accessed May 2023

12. Delgado-Segura, S., Bakshi, S., Pérez-Solà, C., Litton, J., Pachulski, A., Miller, A.,
Bhattacharjee, B.: TxProbe: discovering bitcoin’s network topology using orphan
transactions. In: Goldberg, I., Moore, T. (eds.) FC 2019. LNCS, vol. 11598, pp.
550–566. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32101-7 32

13. Dierks, T., Allen, C.: RFC 2246: the TLS protocol version 1.0 (1999)
14. Eyal, I., Sirer, E.G.: Majority is not enough: bitcoin mining is vulnerable. Commun.

ACM 61(7), 95–102 (2018)
15. Fan, W., Chang, S.-Y., Zhou, X., Xu, S.: ConMan: a connection manipulation-

based attack against bitcoin networking. In: 2021 IEEE Conference on Communi-
cations and Network Security (CNS), pp. 101–109. IEEE (2021)

16. Fan, W., Wuthier, S., Hong, H.-J., Zhou, X., Bai, Y., Chang, S.-Y.: The security
investigation of ban score and misbehavior tracking in bitcoin network. In: 2022
IEEE 42nd International Conference on Distributed Computing Systems (ICDCS),
pp. 191–201. IEEE (2022)

17. Feng, X., Fu, C., Li, Q., Sun, K., Xu, K.: Off-path TCP exploits of the mixed IPID
assignment. In: Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, pp. 1323–1335 (2020)

18. Feng, X., Li, Q., Sun, K., Fu, C., Xu, K.: Off-path TCP hijacking attacks via the
side channel of downgraded IPID. IEEE/ACM Trans. Netw. 30(1), 409–422 (2021)

19. Franzoni, F., Daza, V.: SoK: network-level attacks on the bitcoin P2P network.
IEEE Access 10, 94924–94962 (2022)

20. Gervais, A., Karame, G.O., Capkun, V., Capkun, S.: Is bitcoin a decentralized
currency? IEEE Secur. Priv. 12(3), 54–60 (2014)

21. Gervais, A., Karame, G.O., Wüst, K., Glykantzis, V., Ritzdorf, H., Capkun, S.: On
the security and performance of proof of work blockchains. In: Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security, pp.
3–16 (2016)

22. Gervais, A., Ritzdorf, H., Karame, G.O., Capkun, S.: Tampering with the delivery
of blocks and transactions in bitcoin. In: Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, pp. 692–705 (2015)

https://doi.org/10.1007/978-3-319-22846-4_10
https://doi.org/10.1007/978-3-319-22846-4_10
https://bitcoincore.org/en/2018/09/20/notice/
https://doi.org/10.1007/978-3-030-32101-7_32


Bijack: Breaking Bitcoin Network with TCP Vulnerabilities 325

23. Gilad, Y., Herzberg, A.: Off-path attacking the web. In: WOOT, pp. 41–52 (2012)
24. Gilad, Y., Herzberg, A.: Spying in the dark: TCP and Tor traffic analysis. In:

Fischer-Hübner, S., Wright, M. (eds.) PETS 2012. LNCS, vol. 7384, pp. 100–119.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31680-7 6

25. Gilad, Y., Herzberg, A.: Off-path TCP injection attacks. ACM Trans. Inf. Syst.
Secur. (TISSEC) 16(4), 1–32 (2014)

26. Gilad, Y., Herzberg, A., Shulman, H.: Off-path hacking: the illusion of challenge-
response authentication. IEEE Secur. Priv. 12(5), 68–77 (2013)

27. Goode, B.: Voice over internet protocol (VoIP). Proc. IEEE 90(9), 1495–1517
(2002)

28. Grundmann, M., Neudecker, T., Hartenstein, H.: Exploiting transaction accumula-
tion and double spends for topology inference in bitcoin. In: Zohar, A., et al. (eds.)
FC 2018. LNCS, vol. 10958, pp. 113–126. Springer, Heidelberg (2019). https://doi.
org/10.1007/978-3-662-58820-8 9

29. Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on bitcoin’s peer-
to-peer network. In: 24th {USENIX} Security Symposium, {USENIX} Security
2015, pp. 129–144 (2015)

30. John, P.: Transmission control protocol. RFC 793 (1981)
31. Luckie, M., Beverly, R., Koga, R., Keys, K., Kroll, J.A., Claffy, K.: Network hygiene,

incentives, and regulation: deployment of source address validation in the internet.
In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Commu-
nications Security, pp. 465–480 (2019)

32. Miller, A., et al.: Discovering bitcoin’s public topology and influential nodes (2015)
33. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Decentralized Bus.

Rev., 21260 (2008)
34. Naumenko, G.: Pr 18991: cache responses to Getaddr 3420 to prevent topology

leaks. https://github.com/bitcoin/bitcoin/pull/18991. Accessed May 2020
35. Nayak, K., Kumar, S., Miller, A., Shi, E.: Stubborn mining: generalizing selfish

mining and combining with an eclipse attack. In: 2016 IEEE European Symposium
on Security and Privacy (EuroS&P), pp. 305–320. IEEE (2016)

36. Neudecker, T., Andelfinger, P., Hartenstein, H.: Timing analysis for inferring the
topology of the bitcoin peer-to-peer network. In: 2016 International IEEE Confer-
ences on Ubiquitous Intelligence & Computing, Advanced and Trusted Computing,
Scalable Computing and Communications, Cloud and Big Data Computing, Inter-
net of People, and Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/S-
martWorld), pp. 358–367. IEEE (2016)

37. National Institute of Standards and Technology: CVE-2020-36516. https://nvd.
nist.gov/vuln/detail/CVE-2020-36516. Accessed May 2023

38. Postel, J.: Internet control protocol. RFC 792 (1981)
39. Litecoin Project: Litecoin. https://litecoin.org. Accessed May 2023
40. Raikwar, M., Gligoroski, D.: DoS attacks on blockchain ecosystem. In: Chaves, R.,

et al. (eds.) Euro-Par 2021: Parallel Processing Workshops, Euro-Par 2021. LNCS,
vol. 13098, pp. 230–242. Springer, Cham (2022). https://doi.org/10.1007/978-3-
031-06156-1 19

41. Ramaiah, A., Stewart, R., Dalal, M.: RFC 5961: improving TCP’s robustness to
blind in-window attacks (2010)

42. Schuba, C.L., Krsul, I.V., Kuhn, M.G., Spafford, E.H., Sundaram, A., Zamboni,
D.: Analysis of a denial of service attack on TCP. In: Proceedings of the 1997 IEEE
Symposium on Security and Privacy (Cat. No. 97CB36097), pp. 208–223. IEEE
(1997)

https://doi.org/10.1007/978-3-642-31680-7_6
https://doi.org/10.1007/978-3-662-58820-8_9
https://doi.org/10.1007/978-3-662-58820-8_9
https://github.com/bitcoin/bitcoin/pull/18991
https://nvd.nist.gov/vuln/detail/CVE-2020-36516
https://nvd.nist.gov/vuln/detail/CVE-2020-36516
https://litecoin.org
https://doi.org/10.1007/978-3-031-06156-1_19
https://doi.org/10.1007/978-3-031-06156-1_19


326 S. Li et al.

43. Tran, M., Choi, I., Moon, G.J., Vu, A.V., Kang, M.S.: A stealthier partitioning
attack against bitcoin peer-to-peer network. In: 2020 IEEE Symposium on Security
and Privacy (SP), pp. 894–909. IEEE (2020)

44. Vasek, M., Thornton, M., Moore, T.: Empirical analysis of denial-of-service attacks
in the bitcoin ecosystem. In: Böhme, R., Brenner, M., Moore, T., Smith, M. (eds.)
FC 2014. LNCS, vol. 8438, pp. 57–71. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-44774-1 5

45. Walck, M., Wang, K., Kim, H.S.: TendrilStaller: block delay attack in bitcoin. In:
2019 IEEE International Conference on Blockchain (Blockchain), pp. 1–9. IEEE
(2019)

46. Xiao, Y., Zhang, N., Lou, W., Hou, Y.T.: A survey of distributed consensus proto-
cols for blockchain networks. IEEE Commun. Surv. Tut. 22(2), 1432–1465 (2020)

47. Yeow, A. Bitnodes. https://bitnodes.io/nodes/#network-snapshot. Accessed April
2023

https://doi.org/10.1007/978-3-662-44774-1_5
https://doi.org/10.1007/978-3-662-44774-1_5
https://bitnodes.io/nodes/#network-snapshot

