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Abstract

The sparse triangular matrix solve (SpTrSV) is an im-
portant computation kernel that is demanded by a va-
riety of numerical methods such as the Gauss-Seidel
iterations. However, developing efficient parallel algo-
rithms for SpTrSV that are suitable for GPUs remains
a challenging task due to the inherently sequential na-
ture in the solve. In this paper, we revisit this problem
by reviewing several parallel algorithms based on dif-
ferent task scheduling and different sparse matrix stor-
age schemes, proposing modifications to the existing
methods that can greatly improve the performance, and
describing the implementations in details. Numerical
results of Gauss-Seidel iterations with structured and
unstructured matrices make evident the superiority of
the proposed algorithms and implementations compar-
ing with state-of-the-art methods in the literature.

1 Introduction

The prevalent many-core architectures are able to de-
liver enormous raw processing power in the form of
massive single-instruction-multiple-data (SIMD) paral-
lelism, where the graphics processing unit (GPU) is one
of the several available platforms, which has been in-
creasingly exploited as general-purpose processors for
scientific computing. The potential of GPUs for sparse
matrix computations was recognized in the early 2000s
when shading languages were still required for the pro-
gramming, see, e.g., [12,23]. Since the advent of CUDA,
the NVIDIA GPUs have drawn much more attention for
accelerating sparse matrix computations such as sparse
linear solvers [13, 16, 19, 25, 35, 39–41, 44, 46] and eigen-
solvers [6, 8, 18, 26], where the significant performance
enhancements were often achieved from the accelerated
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computation kernels such as sparse matrix-vector prod-
ucts [7, 9, 11, 14, 31, 32] and sparse matrix-matrix prod-
ucts [10, 30, 33]. However, the sparse triangular matrix
solve (SpTrSV) remains a challenging task on GPUs due
to its inherently sequential nature, and the performance
reached by this kernel is usually much lower compared
with the multiplication kernels. SpTrSV is demanded by
a variety of numerical algorithms such as sparse direct
solvers for linear systems, the Gauss-Seidel iterations,
and incomplete LU (ILU) factorization preconditioners.

In this paper, we revisit this problem by reviewing
the existing algorithms based on two different schedul-
ing approaches. The first scheduling approach is level-
based, where the unknowns are grouped into levels such
that the unknowns within the same level can be solved
simultaneously, and synchronizations are required to re-
solve the dependencies between the levels. To the best
of our knowledge, the first level-scheduling algorithm
for SpTrSV was due to Anderson and Saad in [4], and
later by Saltz in [43]. The works in [25, 34] might be
the first efforts on the GPU implementation and sim-
ilar approaches were later adopted in [38, 45], where
the sparse triangular matrix is assumed to be stored in
the compressed sparse row (CSR) format. The second
scheduling approach is element-based, which is more ag-
gressive and fine-grained, where an unknown can be im-
mediately solved after the solutions of all the unknowns
that it depends on are available. The idea of element-
based scheduling was first introduced in [20] for shared-
memory machines, and the recent implementations on
GPUs can be found in [27,29], which assumes the com-
pressed sparse column (CSC) format. Since synchro-
nization is typically not required, this approach is also
referred to as the synchronization-free approach. After
that, we propose modifications to the existing element-
scheduling algorithms that incorporates the level infor-
mation, which turned out to be able to greatly improve
the performance. One of the main focuses of this paper
is on the efficient implementations for state-of-the-art
GPUs, the implementation details of these algorithms
will be discussed.

Considerable research has also been done on the
impact of matrix reorderings and graph colorings on
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the performance of SpTrSV [21, 25, 36, 45]. In general,
the performance of SpTrSV can be improved if the ma-
trix has been permuted by graph colorings or by certain
types of reorderings [25]. However, we remark that re-
ordering or equivalently performing Gauss-Seidel itera-
tions in different orders actually yields a different system
to solve. Thus, coloring and reordering are not consid-
ered in this work. Another line of methods is based
on the “partitioned inverses” proposed in [2, 3], where
the inverse of a triangular matrix is represented as the
product of multiple sparse triangular factors, and thus
the solve reduces to matrix-vector products with the tri-
angular matrix factors. Related works also include the
approaches of using iterative methods to approximately
solve sparse triangular systems for preconditioning pur-
poses [5,15]. These types of methods are also out of the
scope of this work.

The remaining of the paper is organized as follows:
a summary of the notations used in this paper is given
in Section 2; the level-based and element-based schedul-
ing approaches are reviewed in Sections 3 and 4 respec-
tively; the CUDA implementations of the proposed al-
gorithms are discussed in details in Section 5; numeri-
cal results of Gauss-Seidel iterations on structured and
unstructured matrices are presented in Section 6 and
finally we conclude in Section 7.

2 Notations

We consider the SpTrSV kernel of the form

(2.1) (L+D)x = f or (U +D)x = f,

where sparse matrices L ∈ Rn×n and U ∈ Rn×n are
strictly lower and upper triangular respectively, stored
in the CSR format or the CSC format, D is a diagonal
matrix with no zero entries on the diagonal, saved in
a vector d, and f ∈ Rn is the dense right-hand-side.
Standard approaches for (2.1) are forward and backward
substitutions.

3 Level-scheduling algorithms

Parallelism in SpTrSV can be discovered by analyzing
the dependencies between unknowns. Unknown x(i)
can be immediately determined once all the other
unknowns involved in equation i become available.
The dependencies can be analyzed by exploiting the
underlying directed acyclic graph (DAG) associated
with the triangular matrix. We associate the (i, j) entry
of the matrix if it is nonzero to the edge from node j to
node i in the DAG, which indicates that the solution of
x(i) depends on that of x(j). The idea is then to group
the unknowns into different levels, where the first level
consists of the nodes in the graph with zero in-degree
and nodes in any level should only depend on those in

Algorithm 1 CSR SpTrSV with level scheduling

for m = 1, . . . , nlev do
parfor k = ilev(m), . . . , ilev(m+ 1)− 1 do
i := jlev (k)
x(i) := f(i)
for j = rowptr (i) , . . . , rowptr (i+ 1)− 1 do
x(i) := x(i)− val(j)× x(colind(j))

end for
x(i) := x(i)/d(i)

end parfor
end for

the lower levels. Therefore, the system can be solved
level by level and the unknowns within the same level
can be computed simultaneously. This approach is often
known as level scheduling [42]

The levels of the unknowns can be easily obtained
by exploiting a type of topological sorting of the DAG.
The level of x(i), denoted by lev(i), can be simply
computed by

for i = 1, 2, . . . , n do
lev (i) = 1 + max {lev (j)} , for Lij 6= 0

end for

for the forward substitutions, where the matrix L is
accessed by rows. If the column access is more efficient,
lev(i) can be computed alternatively as

for j = 1, 2, . . . , n do
lev (i) = max{lev(j) + 1, lev(i)}, for Lij 6= 0

end for

where all lev(i) must be first initialized to zeros before
the for-loop. The levels for the backward substitutions
can be computed in the same way with the matrix U
and reversing the order of the loop.

SpTrSV with level scheduling in the CSR format
is presented in Algorithm 1, where nlev denotes the
number of levels, jlev is an array that lists the unknowns
in a nondecreasing order of their levels, and array ilev
contains the pointers to the levels in jlev, i.e., ilev(i) is
the position in jlev where level i starts.

The level-scheduling algorithm with the CSC for-
mat is shown in Algorithm 2, where the solution x
should first be initialized to be equal to f . A remarkable
difference in this algorithm is the requirement of a criti-
cal section around the concurrent updates to x, in order
to avoid memory read and write conflicts in parallel.

Clearly, we have 1 ≤ nlev ≤ n, and on average
the degree of parallelism is n/nlev. The best scenario
corresponds to the situation where all the unknowns can
be computed simultaneously (i.e., for diagonal matrices,
nlev = 1), whereas in the worst case, when nlev = n,
each unknown is of a different level, so that the solve
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Algorithm 2 CSC SpTrSV with level scheduling

x := f
for m = 1, . . . , nlev do
parfor k = ilev(m), . . . , ilev(m+ 1)− 1 do
i := jlev (k)
x(i) := x(i)/d(i)
for j = colptr (i) , . . . , colptr (i+ 1)− 1 do

CRITICAL SECTION ENTRY
x(rowind(j)) := x(rowind(j))− val(j)× x(i)
CRITICAL SECTION EXIT

end for
end parfor

end for

Figure 1: Level scheduling for the 5-point stencil oper-
ator on a 2-D regular grid
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becomes completely sequential. Thus, the performance
of the level-scheduling algorithms significantly depends
on the number of the levels. For a regular grid of size
nx × ny × nz and the 7-point operator, we can write
nlev = nx + ny + nz − 2. In Figure 1, the levels in the
5× 5× 1 grid are shown as an example.

4 Element-scheduling algorithms

The level-scheduling algorithms discussed in the previ-
ous section have a main drawback of including a global
synchronization point between any two levels. It is not
only that the synchronization itself represents an ex-
tra overhead but the synchronization can also stall jobs
that are ready to go. In Figure 1, suppose that the
computations on nodes 5, 9 and 13 are finished ear-
lier than those on 17 and 21. By the level-scheduling
method, the computations in level 6 will not be started
until the entire level 5 finishes, although nodes 10 and

14 are free of dependencies immediately after the jobs
on nodes 5, 9 and 13 are done. This issue motivated
a more fine-grained element-scheduling approach that
can schedule more aggressively the computations of the
elements that are ready to be solved and can also avoid
global synchronizations. It is worth pointing out that
the element-scheduling approach has the same degree of
parallelism as that in the level scheduling; however, it is
the latency between the time when an unknown is ready
to be solved and the time it is actually being solved that
can be reduced.

SpTrSV with element scheduling in the CSR format
is presented in Algorithm 3, where an array ready(j) is
used to indicate if x(j) has already been solved, which
should be initialized to be 0. Note that there is a
busy-waiting loop for each individual dependency that
iterates until the corresponding unknown is ready, and
x(i) is computed when all the unknowns that i depends
on become available. After x(i) is computed, ready(i)
can be set to 1. Taking a closer look at this algorithm,
compared with Algorithm 1, a finer-level concurrency
can actually be achieved as well in the reduction-loop,
i.e., “for j = rowptr(i), . . . , rowptr(i + 1) − 1”, where
individual partial sum val(j) × x(colind(j)) can be
computed as soon as x(colind(j)) is ready, which is
indicated by ready(colind(j)), whereas in Algorithm 1,
the whole reduction is not started until the solutions of
all the dependencies are available and x(i) is ready to
be solved.

Algorithm 3 CSR SpTrSV with element scheduling

parfor i = 1, 2, . . . , n do
x(i) := f(i)
for j = rowptr(i), . . . , rowptr(i+ 1)− 1 do
while ready(colind(j)) = 0 do
{busy waiting}

end while
x(i) := x(i)− val(j)× x(colind(j))

end for
x(i) := x(i)/d(i)
ready(i) := 1

end parfor

SpTrSV with element scheduling in the CSC for-
mat is described in Algorithm 4, which uses a differ-
ent scheme that is based on counters to resolve the de-
pendencies. A counter count(i) is maintained, for all
i = 1, . . . , n, to keep the number of dependencies of i
that have not been unfinished, which should be initial-
ized as the number of nonzeros in the i-th row of the
triangular matrix. Once count(i) reaches zero, it follows
that x(i) is ready to be solved and after that the corre-
sponding counters of all the unknowns that depend on i
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should be decreased by 1. Note that this decrement op-
eration should also be put inside the critical region since
the decrements to the same count(i) can be executed in
parallel from different unknowns.

Algorithm 4 CSC SpTrSV with element scheduling

x := f
parfor i = 1, 2, . . . , n do

while count(i) 6= 0 do
{do nothing}

end while
x(i) := x(i)/d(i)
for j = colptr(i), . . . , colptr(i+ 1)− 1 do

CRITICAL SECTION ENTRY
x(rowind(j)) := x(rowind(j))− val(j)× x(i)
count(rowind(j)) := count(rowind(j))− 1
CRITICAL SECTION EXIT

end for
end parfor

5 Implementation details

5.1 SpTrSV kernels The aforementioned SpTrSV
algorithms have been implemented for NVIDIA GPUs,
namely that are the level scheduling in the CSR for-
mat (LEVR), the level scheduling in the CSC format
(LEVC), the element scheduling in the CSR format
(ELMR), and the element scheduling in the CSC format
(ELMC). In this section, we discuss their CUDA kernels
in turn and also the implementations of the Gauss-Seidel
iterations using the SpTrSV kernels. Only the forward
substitutions will be presented, while the extension to
the backward substitutions is straightforward.

We shall start with the implementation of kernel
LEVR, which is corresponding the parfor-loop of Algo-
rithm 1, where l1 = ilev(m) and l2 = ilev(m+ 1) for a
given level m. A group of K threads, where K is assumed
to be 2, 4, 8, 16 or 32, is dispatched for one unknown
of level m that is associated with the global index of
the group, gid. The pointers of the corresponding row
are loaded by the first two threads of the group and
broadcast to all the threads in the group by the warp-
level primitive, shfl sync. The dot-product between
a matrix row and the right-hand side is performed by
the parallel reduction with the group of threads using
warp shuffles as well. Finally, the first thread of a group
computes the result and saves it back to x(i).

template <int K, typename T>

__global__ void

LEVR(T *f, T *x, T *d, T *val , int *colind ,

int *rowptr , int *jlev , int l1, int l2)

{

int gid = (blockIdx.x * blockDim.x +

threadIdx.x) / K;

int lane = threadIdx.x & (K - 1);

int p = 0, q = 0, i = -1;

T sum = 0.0;

if (gid + l1 < l2 && lane < 2) {

i = jlev[gid+l1];

p = rowptr[i+lane];

}

q = __shfl_sync(-1, p, 1, K);

p = __shfl_sync(-1, p, 0, K);

for (p += lane; p < q; p += K)

sum += val[p] * x[colind[p]];

#pragma unroll // parallel reduction

for (int d = K/2; d > 0; d >>= 1)

sum += __shfl_down_sync (-1, sum , d);

if (i >= 0 && lane == 0)

x[i] = (f[i] - sum) / d[i];

}

The implementation of kernel LEVC that corre-
sponds to the parfor-loop of Algorithm 2 is shown below,
where the input solution vector x is assumed to have
been initialized as the right-hand side. To save mem-
ory transactions, we let only the first thread of a group
read x(i) and d(i), compute x(i), and then broadcast
the result to all the threads of the group. The solution
updating associated with the most inner for-loop of Al-
gorithm 2 is done in parallel by the group of threads,
where the critical section is implemented by using the
CUDA atomicAdd operation.

template <int K, typename T>

__global__ void

LEVC(T *x, T *d, T *val , int *rowind ,

int *colptr , int *jlev , int l1, int l2)

{

int gid = (blockIdx.x * blockDim.x +

threadIdx.x) / K;

int lane = threadIdx.x & (K - 1);

int p = 0, q = 0;

T t = 0.0;

if (gid + l1 < l2 && lane < 2) {

int i = jlev[gid+l1];

p = colptr[i+lane];

if (lane == 0)

x[i] = t = x[i] / d[i];

}

q = __shfl_sync(-1, p, 1, K);

p = __shfl_sync(-1, p, 0, K);

t = __shfl_sync(-1, t, 0, K);

for (p += lane; p < q; p += K)

atomicAdd (&x[rowind[p]], -t*val[p]);

}

The above two level-scheduling kernels solve the
unknowns of a given level at a time, so that the entire
substitutions can be done by repeatedly launching the
kernel in an outer-loop shown as follows, in which way
the global synchronization across thread blocks can
be achieved. Furthermore, an optimization regarding
reducing the kernel launching overhead proposed in [34]
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is adopted, where the consecutive kernels that require
only one thread block are grouped into a single kernel for
a chain of levels, and inside the kernel, syncthreads()

is used to synchronize the threads of the block between
the levels.

for (int m = 0; m < nlev; m++)

LEVR <<<...>>>(x,d,val ,colind ,rowptr ,jlev ,

ilev[m],ilev[m+]);

In the rest of this section, we discuss the imple-
mentations of SpTrSV with the element-scheduling ap-
proach. The following kernel ELMR implements Algo-
rithm 3, where a fixed number of 32 threads (a warp)
is used for each unknown and each thread keeps check-
ing if the corresponding dependency has been ready.
Once it is ready, its contribution is added to the par-
tial sum. The value f[i] and the diagonal entry d[i]

are prefetched by the first thread of a warp prior to
the busy-waiting loop. When all the dependencies have
been resolved, it follows that the reduction is done
in parallel within the warp and the first thread com-
putes and saves the result as in LEVR. Note here that
a threadfence() is put up after updating x[i] and
before setting ready[i]. This is to guarantee that at
the time when the threads working on the unknowns
that depend on x[i] see its readiness, the correct result
of x[i] should already have been observed by all the
threads in the device. Moreover, adding the keyword
volatile to a variable is to tell the compiler that this
variable can be changed at any time by other threads
and therefore any reference to this variable compiles to
an actual memory read or write instruction [37].

template <typename T>

__global__ void

ELMR(int n, T *f, volatile T *x, T *d, T *val ,

int *colind , int *rowptr , int *jlev ,

volatile char *ready)

{

int wid = (blockIdx.x * blockDim.x +

threadIdx.x) >> 5;

int lane = threadIdx.x & (warpSize - 1);

if (wid >= n) return;

int p = 0, q = 0, i = -1;

T sum = 0.0, diag;

if (lane < 2) {

i = jlev[wid];

p = rowptr[i+lane];

}

q = __shfl_sync(-1, p, 1);

p = __shfl_sync(-1, p, 0);

if (lane == 0) {

sum = f[i]; diag = d[i];

}

for (p += warp_lane; p < q; p += warpSize) {

while (ready[colind[p]] == 0);

sum -= val[p] * x[colind[p]];

}

#pragma unroll // parallel reduction

for (int d = warpSize /2; d > 0; d >>= 1)

sum += __shfl_down_sync (-1, sum , d);

if (lane == 0) {

x[i] = sum / diag;

__threadfence ();

ready[i] = 1;

}

}

Finally, we discuss the implementation of kernel
ELMC associated with Algorithm 4 that uses a counter-
based busy-waiting scheme. The first thread of a warp
constantly compares count[i] with zero in the busy-
waiting loop, and computes x[i] afterwards when it
goes out of the busy loop. The column-wise updating to
the unknowns that depend on x[i] and the decrements
of the corresponding counters are performed with the
atomic functions, where a threadfence() is required
after each update to the solution and before decreasing
the counter to makes sure that the counter decrement
is only performed after the updated solution has been
written to global memory.

template <typename T>

__global__ void

ELMC(int n, volatile T *x, T *d, T *val ,

int *rowind , int *colptr , int *jlev ,

volatile int *count)

{

int wid = (blockIdx.x * blockDim.x +

threadIdx.x) >> 5;

int lane = threadIdx.x & (warpSize - 1);

if (wid >= n) return;

int p = 0, q = 0;

T t = 0.0;

if (lane < 2) {

int i = jlev[wid];

p = colptr[i+lane];

}

q = __shfl_sync(-1, p, 1);

p = __shfl_sync(-1, p, 0);

if (lane == 0) {

t = 1.0 / d[i];

while (count[i] != 0);

x[i] = t = x[i] * t;

}

t = __shfl_sync(-1, t, 0);

for (p += lane; p < q; p += warpSize) {

atomicAdd (&x[rowind[p]], -t*val[p]);

__threadfence ();

atomicSub (&count[rowind[p]], 1);

}

}

Before closing this section, we remark that our
ELMC algorithm was indeed inspired by the “global
synchronization free” algorithm proposed in [27], where
a scheduling approach similar to the element scheduling
was used as well as the counter-based scheme to resolve
dependencies. We list two major differences between the
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two algorithms and their implementations as follows:

1. In [27], the warp that has the global warp index i
is dispatched to solve the unknown x(i), whereas
in our algorithm, the mapping between warps and
the unknowns respects the levels of the unknowns,
i.e., warp i is dispatched to unknown x(jlev(i)).
Note that as long as the assumption holds that the
CUDA runtime scheduler activates the warps based
on their global warp indices, i.e., a warp i must be
activated before a warp j if i < j, both algorithms
can be guaranteed to be deadlock-free.

2. In our implementations, only the first thread of a
warp is spinning on the lock, whereas the other
threads of the warp are waiting for the first thread
to finish the busy-waiting loop before proceeding
to the later instructions. This coordination is
guaranteed by the warp-level synchronization, that
is, a warp can only execute one common instruction
at a time and warp divergence is serialized. On the
other hand, in [27], the whole warp is spinning.

As will be shown later in Section 6, the above mod-
ifications could yield tremendous performance gains to
the existing synchronization-free approach; however, on
the negative side, the dispatching approach in our algo-
rithms requires the level information, and consequently,
the analysis phase is more expensive in order to compute
the levels.

5.2 Gauss-Seidel iterations The Gauss-Seidel iter-
ations are considered in this work as the application
of the developed SpTrSV kernels. The forward Gauss-
Seidel iterations can be represented in a matrix form

(5.2) (L+D)xk+1 + Uxk = f,

where the whole matrix A = L + D + U is assumed
to be given as the input matrix. The Gauss-Seidel
kernels in the CSR format can be easily modified from
the CSR format SpTrSV kernels, where, in general, the
output xk+1 and the input xk should be stored in two
separate vectors and the statement in the inner for-loops
of Algorithms 1 and 3, i.e.,

x(i) := x(i)− val(j)× x(colind(j)),

should be changed to

if colind(j) < i then
xk+1(i) := xk+1(i)− val(j)× xk+1(colind(j))

else if colind(j) > i then
xk+1(i) := xk+1(i)− val(j)× xk(colind(j))

end if

to read appropriate values from xk and xk+1 corre-
sponding to the lower and the upper triangular part of

row i. However, when A is symmetric, it follows that xk
and xk+1 can share the same memory. In other words,
(5.2) can be performed “in-place” with a single vector
x as the input and the output, which can be shown by
checking the dependencies of unknowns as the following.
For some ai,j 6= 0 with j > i, we also have aj,i 6= 0, so
x(j) depends on x(i) in the forward sweep and the level
of x(j) must be higher than the one of x(i). Hence, at
the time of solving x(i), the value of x(j) must have not
been changed from its original value in xk(j).

On the other hand, for executing the Gauss-Seidel
iterations (5.2) using the CSC format SpTrSV kernels,
we can compute a new right-hand side, rk := f − Uxk,
followed by solving (L + D)xk+1 = rk, or equivalently
we can compute

(5.3) rk := f −Axk, xk+1 = xk + (L+D)−1rk,

in the cases where performing the matrix-vector product
with a triangular part of A is not readily available. All
the above results can be easily extended to the backward
Gauss-Seidel iterations.

5.3 Analysis phases All the parallel SpTrSV algo-
rithms discussed in this paper require an analysis phase
to computes the levels of the unknowns and, in addition,
the dependency counts for the ELMC algorithm. The
analysis phase may be considered as an extra overhead;
however, several factors should be taken into account:
First, the analysis is usually not very expensive relative
to the solve, so a faster parallel solve can pay off the
cost of the analysis. Second, more importantly, in many
applications, such as the Gauss-Seidel iterations consid-
ered in this work, multiple solves are required with the
same matrix, so the cost of the analysis phase can be
amortized. Third, there also exist parallel topological
sorting algorithms for determining the levels, proposed
by Kahn [22] in 1962, which can further reduce the cost.
The first CUDA implementation of Kahn’s algorithm
was due to Naumov [34] and later in [24] using a mod-
ified parallel breadth first search (BFS). In this work,
the levels of the unknowns were determined with the
simple approach discussed in Section 3 on the CPU. We
refer to [24] for the performance of the analysis phase
running on GPUs and its cost relative to the overall cost
of the iterations.

6 Numerical experiments

The experiments were conducted on the machines at
Lawrence Livermore National Laboratory, equipped
with NVIDIA P100 and V100 GPUs and IBM POWER
CPUs. The CUDA program was compiled by nvcc with
option -gencode arch=compute 60,"code=sm 60" for
P100, and compute 70, sm 70 for V100. For the CUDA
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kernel configurations, thread blocks are one-dimensional
of size 512. Our SpTrSV kernels were used to implement
the Gauss-Seidel iterations and compared with the two
solvers cusparseDcsrsv and cusparseDcsrsv2 avail-
able from cuSPARSE v9.2, denoted by CUS1 and CUS2
in the following of the paper, and the implementation of
the global-synchronization-free algorithm available from
bhSPARSE [28] denoted by GSF. The cusparseDcsrsv

solver adopted a similar level-scheduling approach [34],
whereas the algorithm used in cusparseDcsrsv2 has
not been published.

In the following of this section, we will show the
performance on structured matrices obtained from dis-
cretized Laplace operators, and some general matrices.
All the tests were performed in double precision. For
each test matrix, we performed a forward Gauss-Seidel
sweep followed by a backward one, the performance of
which was measured in GFLOPS given by

(6.4) GFLOPS =
4× nnz − 2× n

t× 109
,

where we denote by nnz the number of nonzeros of the
matrix and by t the time measured in seconds. The
CSR format Gauss-Seidel kernels were modified from
the corresponding SpTrSV kernels, and the CSC format
Gauss-Seidel sweeps were performed in two steps as in
(5.3), where the matrix-vector product was computed
with A in the CSR format for better performance. The
timings of the analysis phase are omitted.

6.1 Laplacian matrices We shall start our perfor-
mance study with a set of discretized Laplacians ob-
tained from the finite-difference discretization on regu-
lar grids of dimension nx×ny ×nz, where the numbers
of the mesh points keep the same, while the aspect ra-
tios, ρyx = ny/nx for 2-D grids and ρzx = nz/nx for 3-D
grids, vary. Since the number of the levels in SpTrSV
increases with the aspect ratios and thus the degree of
parallelism decreases, lower performance is expected for
grids with higher aspect ratios. For the 2-D grids, we
tested Laplacian matrices with standard 5- and 9- point
stencils, while for the 3-D grids we tested the standard
7- and 27-point Laplacian matrices.

In Table 1, we show the performance of the Gauss-
Seidel sweeps with the 7 different SpTrSV kernels for
the 2-D Laplacian matrices on P100 and V100 GPUs.
For most of the matrices, our level-scheduling based
kernels LEVR and LEVC outperformed their counterpart
CUS1 in cuSPARSE, whereas the only exception was
on V100 with the 9-point operator on the last grid,
where CUS1 was considerably faster than LEVR and LEVC.
In addition, the performances of LEVR and LEVC were
very close for all the cases. On the other hand, our

Table 1: Performance of forward and backward Gauss-
Seidel sweeps for 2-D Laplacians (in GFLOPS) with the
best results highlighted in boldface.

(a) 5-point stencil on P100

Grid LEVR LEVC ELMR ELMC CUS1 CUS2 GSF

2048 × 2048 2.11 2.27 4.59 4.76 1.75 3.16 0.02

1024 × 4096 1.79 1.95 4.50 4.07 1.41 3.43 0.04

512 × 8192 1.10 1.15 3.23 2.70 0.86 2.29 0.08

256 × 16384 0.59 0.60 1.75 1.61 0.46 1.33 0.15

128 × 32768 0.30 0.30 0.94 0.94 0.24 0.73 0.27

(b) 9-point stencil on P100

Grid LEVR LEVC ELMR ELMC CUS1 CUS2 GSF

2048 × 2048 2.79 2.90 7.12 6.17 2.13 5.12 0.04

1024 × 4096 1.93 1.96 5.41 4.52 1.48 3.77 0.07

512 × 8192 1.04 1.05 3.05 2.76 0.83 2.15 0.13

256 × 16384 0.54 0.54 1.59 1.58 0.43 1.20 0.25

128 × 32768 0.27 0.27 0.71 0.86 0.31 0.49 0.42

(c) 5-point stencil on V100

Grid LEVR LEVC ELMR ELMC CUS1 CUS2 GSF

2048 × 2048 2.07 2.09 6.10 5.25 2.10 2.07 0.04

1024 × 4096 1.60 1.63 5.44 4.31 1.70 1.85 0.06

512 × 8192 0.97 0.98 3.56 2.49 1.07 1.04 0.12

256 × 16384 0.49 0.50 1.90 1.11 0.51 0.42 0.24

128 × 32768 0.25 0.26 0.94 0.51 0.23 0.14 0.42

(d) 9-point stencil on V100

Grid LEVR LEVC ELMR ELMC CUS1 CUS2 GSF

2048 × 2048 2.50 2.55 8.50 6.08 2.71 2.09 0.08

1024 × 4096 1.60 1.64 5.99 4.11 1.53 0.99 0.14

512 × 8192 0.90 0.91 3.32 1.92 0.88 0.27 0.28

256 × 16384 0.46 0.47 1.69 0.78 0.42 0.09 0.53

128 × 32768 0.22 0.23 0.66 0.56 0.49 0.08 0.66

element-scheduling based kernels, ELMR and ELMC, ran
much faster than the other kernels, and, moreover, ELMR
exhibited better performance than ELMC in general.

As expected, the performance of most of the kernels
steadily degraded when the aspect ratio ny/nx increased
as the number of levels were increased correspondingly.
However, the kernel GSF, on the contrary, behaved
very differently, which performed exceedingly poorly for
the first grids with lower aspect ratios but eventually
became competitive again for the last grid. We remark
here that the dramatic performance improvement to
GSF by our element-scheduling based kernels was mainly
from the use of the information of the levels. By and
large, the speedup of a factor 1.4 was achieved by ELMR

over cuSPARSE on P100, and a factor of up to 3.2 was
achieved on V100.

The performance for the 3-D Laplacian matrices are
presented in Table 2, where, compared with the 2-D
problems, the GFLOPS numbers are much higher since
there are much more parallelism can be exploited due
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Table 2: Performance of forward and backward Gauss-
Seidel sweeps for 3-D Laplacians (in GFLOPS) with the
best results highlighted in boldface.

(a) 7-point stencil on P100

Grid LEVR LEVC ELMR ELMC CUS1 CUS2 GSF

128 × 128 × 128 4.97 5.10 5.23 5.53 5.02 4.80 0.35

64 × 128 × 256 4.91 5.13 5.82 5.85 5.04 5.03 0.39

64 × 64 × 512 4.64 4.93 6.80 7.83 4.95 5.66 0.44

32 × 64 × 1024 3.54 3.81 7.05 8.26 3.94 5.77 0.45

32 × 32 × 2048 2.91 3.16 6.86 5.96 2.32 5.09 0.59

(b) 27-point stencil on P100

Grid LEVR LEVC ELMR ELMC CUS1 CUS2 GSF

128 × 128 × 128 13.83 13.97 17.91 19.06 9.85 15.06 1.21

64 × 128 × 256 12.27 12.08 21.51 21.40 8.98 15.96 0.91

64 × 64 × 512 9.93 10.17 22.29 16.82 6.64 13.54 1.17

32 × 64 × 1024 5.66 6.11 11.21 10.92 4.16 6.46 1.10

32 × 32 × 2048 2.97 3.02 5.53 6.58 2.22 3.18 1.56

(c) 7-point stencil on V100

Grid LEVR LEVC ELMR ELMC CUS1 CUS2 GSF

128 × 128 × 128 6.88 7.32 8.51 9.03 7.79 8.06 0.74

64 × 128 × 256 7.11 7.69 9.66 10.90 8.45 8.81 0.73

64 × 64 × 512 6.71 7.05 10.79 13.87 8.02 10.43 0.84

32 × 64 × 1024 5.16 5.19 10.79 11.62 4.76 8.51 0.86

32 × 32 × 2048 2.62 2.67 8.45 6.51 2.51 4.76 1.18

(d) 27-point stencil on V100

Grid LEVR LEVC ELMR ELMC CUS1 CUS2 GSF

128 × 128 × 128 19.53 18.74 34.57 30.33 16.87 28.40 1.91

64 × 128 × 256 16.27 16.38 35.12 27.27 13.87 25.21 1.64

64 × 64 × 512 9.98 10.36 29.20 18.61 9.46 16.97 2.02

32 × 64 × 1024 5.01 5.16 14.27 9.97 4.79 7.17 1.96

32 × 32 × 2048 2.62 2.67 6.49 4.77 2.41 3.11 2.86

to the fact that the numbers of levels are much fewer
and also there are more operations for each unknown
from the larger stencil sizes. When comparing among
the kernels, the results are similar as those in the 2-D
cases, where ELMR and ELMC remained the fastest for all
the problems, while, however, there were several cases
that ELMC was actually faster than ELMR. The speedups
of factors up to 1.7 and 2.0 relative to cuSPARSE
were obtained on P100 and V100 respectively by the
two element-scheduling kernels. The throughput of GSF
consistently stayed low compared with the other kernels.

Furthermore, it is worth mentioning that for the 3-
D problems, the performance of running all the kernels
on nearly all the grids on V100 was considerably higher
than that on P100, which was, in contrast, often not the
case for running the 2-D problems.

6.2 General matrices In this section, we report the
experiment results on 19 matrices selected from the
SuiteSparse Matrix Collection [17] and 2 matrices from

Table 3: The name and a short description of each test
matrix.

Matrix DESCRIPTION Matrix DESCRIPTION

3D thermal2 thermal problem elasticity2D 2D FEM elasticity

thermomech thermal problem elasticity3D 3D FEM elasticity

offshore electromagnetics thermal2 steady state thermal

ASIC 320ks circuit Simulation atmosmodd atmospheric model

cage13 DNA electrophoresis StocF-1465 flow in porous media

af shell3 sheet metal forming af shell10 sheet metal forming

af shell8 sheet metal forming G3 circuit circuit Simulation

parabolic fem convection diffusion Transport flow and transport

apache2 structural problem Bump 2911 reservoir simulation

ecology2 landscape ecology Queen 4147 3D structural

webbase1M web connectivity

the linear elasticity problems discretized by finite ele-
ment methods on unstructured meshes using MFEM [1].
The dimension (N), the number of the nonzeros (NNZ),
the average number of non-zeros per row (RNZ), the
number of levels in the L and U parts of the matri-
ces (NLEV = NLEV(L) + NLEV(U)) and the average
degree of parallelism with respect to the number of un-
knowns (NPAR = 2N/NLEV) of each matrix are tabu-
lated in Table 3, and short descriptions of the test ma-
trices are given in Table 4. The sizes of the test matrices
range from several hundred of thousands to a few mil-
lion, and the densities of the matrices vary from a few
nonzeros per row to several scores. The average degrees
of parallelism also have significant variations.

In Table 5, we report the performance of the
Gauss-Seidel iterations for the general matrices on P100
and V100. From the results, we can see that high
GFLOPS numbers were achieved by the matrices with
both large average degrees of parallelism and large
average numbers of nonzeros per row. On the whole,
the ranking of the performance among test matrices,
measured in GFLOPS, actually matches the ordering by
the product of RNZ and NPAR very well. Specifically,
the matrices that have the 4 largest values of RNZ ×
NPAR, namely parabolic fem, cage13, elasticity3D
and Transport, yielded the highest throughput among
all the matrices, while, on the other hand, the matrices
that have the smallest values yielded poor performance,
such as 3D thermal2, offshore and ecology2.

Comparing the different kernels, our two element-
scheduling kernels, by and large, turned out to have the
best performance, where ELMC was the fastest for 12
out of the 21 matrices on P100 and for 4 matrices on
V100, while ELMR won for 5 matrices on P100 and for
15 matrices on V100. There were still a few cases where
LEVR and LEVC could work better, including the matrix
parabolic fem that is of the size about half million
and only has 14 levels, which makes the level-scheduling
approach very efficient. Comparing with CUS1 and CUS2
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Table 4: The order (N), the number of the nonzeros
(NNZ), the average number of nonzeros per row (RNZ),
the number of levels (NLEV), and the average degree of
parallelism (NPAR) of each test matrix.

Matrix N NNZ RNZ NLEV NPAR

3D thermal2 147,900 3,489,300 23.6 7,514 39

thermomech 204,316 2,846,228 13.9 1288 317

offshore 259,789 4,242,673 16.3 6,904 75

ASIC 320ks 321,671 1,316,085 4.1 70 9,191

cage13 445,315 7,479,343 16.8 166 5,365

af shell3 504,855 17,562,051 34.8 7,450 136

af shell8 504,855 17,588,875 34.8 7,450 136

parabolic fem 525,825 3,674,625 7.0 14 75,118

apache2 715,176 4,817,870 6.8 1,328 1,077

ecology2 999,999 4,995,991 5.0 3,998 500

webbase1M 1,000,005 3,105,536 3.1 1,026 1,449

elasticity2D 1,002,528 14,012,744 14.0 5,660 354

elasticity3D 1,029,000 80,990,208 78.7 2,904 709

thermal2 1,228,045 8,580,313 7.0 2,478 991

atmosmodd 1,270,432 8,814,880 6.9 704 3,609

StocF-1465 1,465,137 21,005,389 14.3 6,008 488

af shell10 1,508,065 52,672,325 34.9 16,720 180

G3 circuit 1,585,478 7,660,826 4.8 5,188 611

Transport 1,602,111 23,500,731 14.7 1,142 2,806

Bump 2911 2,911,419 127,729,899 43.8 20,548 283

Queen 4147 4,147,110 329,499,284 79.4 24,228 342

from cuSPARSE and GSF, our proposed kernels achieved
speedups for almost all the cases by a factor of up to
3.0 and on average 1.7 on P100, and the speedup by a
factor of up to 3.8 and on average 1.6 on V100. The only
exception that our kernels were not the fastest one was
for the matrix thermomech on V100, where our best
kernel ELMR was about 10% slower than CUS2, which
was the fastest. Lastly, for many of the matrices, the
performance of GSF was not very competitive compared
with the other kernels.

When comparing the performance on the two types
of the GPUs, we found that on V100 ELMR, CUS1

and GSF were able to run a lot faster for nearly all
the cases than running on P100, whereas LEVR and
LEVC could be slightly slower for several cases, and
moreover, the performance of ELMC and CUS2 on V100
was found to deteriorate more severely for more cases.
This performance issue on V100 is currently under the
investigation by the authors.

7 Conclusions

In this paper, we considered the parallel algorithms for
solving sparse triangular linear systems that are appro-
priate for the state-of-the-art GPUs. The proposed al-
gorithms are based on different scheduling approaches
and different matrix storage formats, in which several

Table 5: Performance of forward and backward Gauss-
Seidel sweeps for general matrices (in GFLOPS) with
the best results highlighted in boldface.

(a) P100

Matrix LEVR LEVC ELMR ELMC CUS1 CUS2 GSF

3D thermal2 0.55 0.62 0.96 1.45 0.34 0.60 0.65
thermomech 2.99 3.12 3.46 5.23 1.89 4.58 3.56
offshore 0.62 0.76 1.32 1.91 0.44 0.82 0.72
ASIC 320ks 4.68 5.87 5.05 5.29 5.01 4.19 2.86
cage13 14.51 13.90 12.22 13.06 9.95 10.50 5.38
af shell3 1.94 2.33 4.08 6.73 1.63 2.36 0.22
af shell8 1.95 2.34 4.09 6.74 1.63 2.38 0.22
parabolic fem 19.36 13.95 6.52 6.94 11.54 5.66 5.39
apache2 3.18 3.19 6.19 6.12 2.44 4.80 0.17
ecology2 1.13 1.24 3.28 2.86 0.91 2.28 0.04
webbase1M 1.13 1.66 1.81 2.23 1.37 1.69 1.91
elasticity2D 2.40 2.53 6.60 5.83 1.76 4.45 0.08
elasticity3D 16.87 16.99 28.24 25.39 12.49 19.47 1.75
thermal2 2.77 3.18 4.90 4.90 2.18 4.11 1.63
atmosmodd 7.25 6.40 5.68 6.16 4.82 5.15 0.31
StocF-1465 3.16 3.50 6.64 7.54 2.26 5.32 1.33
af shell10 2.64 3.17 4.20 8.07 2.15 2.69 0.12
G3 circuit 1.32 1.42 3.73 3.25 1.06 2.79 0.16
Transport 10.79 10.16 11.46 12.21 7.59 9.81 0.57
Bump 2911 4.80 5.80 9.19 12.84 3.87 7.47 1.26
Queen 4147 8.75 10.23 15.47 18.38 6.70 13.95 1.25

(b) V100

Matrix LEVR LEVC ELMR ELMC CUS1 CUS2 GSF

3D thermal2 0.68 0.76 0.98 0.79 0.34 0.34 0.91
thermomech 3.87 3.85 4.71 4.60 3.00 5.21 5.09
offshore 0.67 0.80 1.36 1.04 0.51 0.77 1.04
ASIC 320ks 5.98 7.84 7.68 8.78 7.34 8.05 4.76
cage13 21.67 20.49 23.18 23.37 16.89 19.44 9.73
af shell3 1.75 1.80 5.33 3.99 1.79 3.39 0.37
af shell8 1.78 1.80 5.35 3.98 1.79 3.36 0.37
parabolic fem 26.84 20.52 9.83 11.93 20.48 12.08 10.93
apache2 2.97 2.95 8.28 6.79 2.71 3.36 0.33
ecology2 1.14 1.15 3.62 2.47 1.04 0.64 0.07
webbase1M 1.30 1.99 2.81 3.06 1.98 2.95 2.54
elasticity2D 2.08 2.17 7.83 4.65 2.04 1.80 0.16
elasticity3D 20.60 20.66 41.45 30.94 17.27 27.37 2.55
thermal2 3.09 3.51 6.62 5.67 2.86 4.99 2.47
atmosmodd 9.62 8.69 9.16 10.91 7.86 8.15 0.64
StocF-1465 3.13 3.72 8.62 6.59 3.03 5.26 2.28
af shell10 2.71 2.79 6.87 5.58 2.44 4.18 0.20
G3 circuit 1.35 1.37 4.43 3.20 1.21 2.17 0.26
Transport 14.79 12.71 21.00 20.33 11.54 16.66 1.10
Bump 2911 5.18 5.51 11.80 11.37 5.28 9.22 2.18
Queen 4147 10.02 10.89 21.99 18.81 9.14 17.74 1.83

modifications to the existing approaches have been in-
troduced that turned out to be able to greatly im-
prove the overall performance. Furthermore, the effi-
cient implementations in CUDA of the proposed algo-
rithms have been carefully examined. As the applica-
tion, the Gauss-Seidel iterations were implemented us-
ing the developed SpTrSV kernels in modified forms.
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Numerical results on structured and unstructured ma-
trices demonstrated the efficiency of the proposed algo-
rithms and their implementations compared with state-
of-the-art software packages, where significant perfor-
mance improvements have been achieved on NVIDIA
Pascal and Volta GPUs. Another practice includes ap-
plying ILU-type preconditioners with the Krylov sub-
space methods, where, in particular, the proposed im-
plementations in both the CSR and the CSC format are
useful for applying incomplete Cholesky or LDL factor-
ization preconditioners, where only one triangular fac-
tor is usually stored. It is also worth mentioning that
the performance of the proposed algorithms in general
deteriorates with the amount of the fill-in in the ILU
factorizations. Therefore, to achieve the best overall
performance of ILU-preconditioned iterations, the users
need to trade-off the speed of the convergence and the
speed of solving the triangular systems when deciding
the level of fill-ins to be introduced.

All the parallel sparse triangular solve algorithms
considered in this paper require an analysis phase in
order to generate the information to exploit the paral-
lelism in the following solve phase. The justification of
paying the extra cost in the analysis phase but having a
faster parallel solve phase was provided for the scenar-
ios of several important applications. In this work, the
analysis phase remained executed on the CPU using a
simple sequential algorithm. Parallel algorithms for the
analysis phase on GPUs have been explored in [24, 34].
Multi-GPU versions of the level-based algorithms seem
promising, where the unknowns within the same level
can still be solved simultaneously after communicating
the required solutions on other GPUs. However, on
the other hand, extending the element-scheduling algo-
rithms to distributed memory environment can be much
more difficult.
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