GPU Acceleration of Ciphertext-

Policy Attribute-Based Encryption

Kai Fan
department of Computer Science
Arkansas State University
State University, USA

kai.fan@smail.astate.edu

Chaoyu Zhang
department of Computer Science
Arkansas State University
State University, USA
chaoyu.zhang@smail.astate.edu

Hai Jiang
department of Computer Science
Arkansas State University
State University, USA
hjiang@astate.edu

Abstract—With the development of cloud computing, data
security became popular in recent decades. However, traditional
cryptography has some major limitations. For example, public key
cryptography is not scalable in cases with many clients. Since
Ciphertext-Policy Attribute-based encryption (CP-ABE) was
developed in 2007, it has become as one of the major candidates to
implement secure cloud storage. However, CP-ABE still cannot
play a solid role due to its several limitations such as complexity of
computation, lack efficiency revocation function, etc. This paper
will review the CP-ABE and analyze the current CP-ABE toolkit.
Major performance bottleneck will be identified and parallelized
in CUDA. CP-ABE toolkit will be partially ported to GPU
platform for acceleration. Some experiments have been conducted
to demonstrate the effectiveness of the proposed approach.

Keywords—GPU, CP-ABE, Security, Performance, Parallel

I. INTRODUCTION

In recent decades, cloud computing has been widely adopted
in the computer world. In cloud centers, a large group of servers
is networked so that the computing services or resources can be
shared remotely. Cloud computing provides several advantages
for its customers, for instance, flexibility, efficiency, and
economy, etc. But the primary concern of cloud computing is
security.

Cloud computing or cloud storage service allows customers
to store their data in remote storage at data centers. Hence, the
service provider must ensure their data center infrastructure, as
well as their customers’ data or applications are secured.
Customers who may use a cryptographic system to protect their
data can encrypt the data before sending them to servers.
However, in traditional public-key cryptography, the sender
needs to have the receivers’ public key for data encryption. In
some cases, we may want to send the same encrypted data to
different customers at the same time. Since these people have

978-1-7281-1651-8/19/$31.00 ©2019 IEEE
SNPD 2019, July 8-11, 2019, Toyama, Japan

94

Hexuan Yu
department of Computer Science
Arkansas State University
State University, USA

hexuan.yu@smail.astate.edu

Ruiwen Shan
department of Computer Science
Arkansas State University
State University, USA

ruiwen.shan@smail.astate.edu

different public and private key pairs, we have to encrypt the
same data with different keys many times based on the number
of recipients.

In 2005 Sahai, and Waters [2] initialized the Attribute-Based
Encryption (ABE) scheme as a new encryption method with
access control. In contrast to traditional public key
cryptography, The ABE system does not need to encrypt critical
data for a particular user. AES can encrypt critical data for a
group which satisfies the. The private keys and ciphertexts of
ABE contain a set of attributes or an access control structure. A
user can decrypt a ciphertext if and only if his private key
attributes math the ciphertext’s policy [2].

Based on a different way to assign the policy, ABE has two
types, called key-policy ABE (KP-ABE) and ciphertext-policy
ABE (CP-ABE). For KP-ABE, during encryption, attributes will
be assigned to a ciphertext. The user’s private key will be created
by an authority, which contains policies. In contrast to KP-ABE,
CP-ABE proposed by Bethencourt, Sahai, and Waters in 2007
[1], which support a set of attributes, e.g., roles, and messages
can be encrypted with policies defined over a set of attributes. In
general, the private key has attributes set, and the ciphertext
contains encrypt/decrypt policies. As one of the special schemes
of public key cryptography, CP-ABE has three advantages
compared to traditional public key cryptography. The first one
is only one public key shared by all users. The second advantage
is that we usually have one ciphertext, which means that the
plaintext and policies are encrypted into one single ciphertext
regardless of the number of recipients. As we know, in
traditional cases, we need to encrypt the same plaintext multiple
times by users’ public keys. The third advantage is CP-ABE can
provide fine-grain access control much more comfortable than a
traditional case. Because of CP-ABE offers expressive rules that
define whether the private keys can decrypt ciphertexts [1].
Specifically, the users' private keys have contained a set of

. IEEE
computer
lDsouety

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on May 25,2024 at 17:24:59 UTC from IEEE Xplore. Restrictions apply.

attributes or labels, and encryption is associated with an access
structure to specify which keys will be able to decrypt

CP-ABE is quite suitable for secure cloud storage. However,
there does not exist many CP-ABE implementations in real
word due to its complexity. The current CP-ABE toolkit adopts
elliptic curve and Cipher Block Chain (CBC) mode AES. Its
slowness has prevented it from being deployed in cloud
environments. This paper intends to identify the performance
bottleneck in CP-ABE toolkit and partially port it to GPU for
speedup.

This paper will be arranged as follows: Section 2 will
introduce the background of ABE and GPU concepts. Section 3
discusses the related work. Section 4 analyzes CP-ABE toolkit
to figure out major components and possible performance
issues. GPU version CP-ABE will be proposed in Section 5.
Section 6 gives some experimental results. Finally, the
conclusion is drawn in Section 7.

II. BACKGROUND

A. Attribute-Based Encryption

ABE is a type of public key encryption which was first
introduced by Amit Sahai and Brent Waters [2] as one of the
special cases of fuzzy Identity-Based Encryption (IBE). IBE has
changed the traditional public key cryptography by using the
receiver’s identity as the public key to avoid access to a public
key certificate [1]. ABE has the same feature, but it is more
flexible. The main difference is that ABE uses a set of attributes
while IBE uses the receiver’s identity as the public key.
Compare to IBE and other public key cryptography systems,
ABE allows users to have more flexibility and control of the
sensitive data.

There are two major forms of ABE cryptography: KP-ABE
and CP-ABE. Both of these ideas are inspired by fuzzy IBE, and
the only difference between these two methods is the location to
save the policy. In CP-ABE, the policy is contained in cipher-
texts whereas in KP-ABE, cipher-texts are associated with sets
of descriptive attributes.

B. Key-Policy Attribute-Based Encryption

KP-ABE [3] was formulated by Goyal, Sahai, Pandey, and
Waters in 2006. In their scheme, the private key in KP-ABE
includes the access control tree and defines which cipher-texts
can be decrypted by this key. The specific access control
structure allows KP-ABE to provide richer types and more
flexible cryptosystems than ABE. According to the
construction, the definition of KP-ABE was defined by [3] as
follows: lease do not revise any of the current designations.

DEFINITION [3]. Let the following be a set of
parties: {P;...,B,}. A collection A € 2Pr-Pn} is monotone if
VB,C:ifB€ Aand B € C thenC € A. An access structure
(resp., monotone access structure) is a collection (resp.,
monotone collection) A of non-empty sub-sets of
{P,...,P,} ie., A C 2P1-Pu} /(D). The sets in A are called the
authorized sets, and the sets not in A are called the
unauthorized sets.

95

The process of KP-ABE could be divided into four parts
[1,3]: Setup, Key Generation, Encryption, and Decryption.
Setup randomly generates the public key PK and master key
MK. The key generation takes access structure A, MK, and PK
as inputs, and generate private decryption key PR as output.
During Encryption, the inputs are original data M, a set of
attributes y, and PK, the output of this phase is ciphertext CT.
For Decryption, the inputs include the ciphertext CT encrypted
with set y, PR for access control A, and PK, if the attribute set
y € A, the decryption algorithm can decrypt the ciphertext and
output the original data M. Otherwise the CT cannot be
decrypted by this PR. Fig. 1 illustrates the ciphertexts that
labeled with attributes set y, PR associated with access control
structure A in which each leaf in the access tree is the attribute
and each node of the tree indicates the threshold gate. “AND”
and “OR” gates are used to present 2 of 2 and 1 of 2 threshold
gates respectively.

Implicit security parameter

Mif(reh)

Fig. 1| KEY-POLICY ATTRIBUTE-BASED ENCRYPTION

C. Parallel Computing and GPU Platform

Parallel computing [11] is a kind of computation where a
large problem is divided into smaller ones which can be solved
concurrently. Since the major manufacturers have started to
produce multiple cores in CPU, parallel computing becomes
popular. Under multi-cores architecture, each core is
independent and can access the same memory at the same time.
Within each small piece, the program is executed in sequential
order.

Parallel computing is also available on Graphics
Processing Unit (GPU) platform specially designed for
intensive and highly parallel computations which execute the
same instruction with many data elements at the same time.
NVIDIA GPU is a typical example. NVIDIA developed
Compute Unified Device Architecture (CUDA) in 2006 [4,6],
which allows the user to use GPUs for general computing. With
CUDA, parallel computing solves many complex
computational problems in a more efficient way, the sequential
part of the program runs on CPU, while the parallel parts run
on thousands of GPU cores simultaneously.

NVIDIA GPU [4,6] consists of a scalable array of
multithreaded Streaming Multiprocessors (SMs). When a
CUDA program on the host CPU launches a kernel, a grid is
created with thread blocks which are the groups of threads
executed concurrently on one multiprocessor (MPs) that handle

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on May 25,2024 at 17:24:59 UTC from IEEE Xplore. Restrictions apply.

one or more blocks of a grid. Each MP can be divided into a
number of stream processors (SPs) or CUDA cores to host one
or more threads of a block.

NVIDIA GPUs provide a hierarchy of memory spaces [4].
Registers and local memory can be read/written by each thread.
Shared memory is a small and fast memory within each MP that
can be read/write by any thread in a block assigned to that MP.
Each grid can read/write the global memory but only can read
constant memory and texture memory.

Since thread blocks are executed independently and in any
order, CUDA provides the barrier primitive to ensure all threads
are synchronized periodically. To avoid unnecessary
slowdowns, all these synchronization functions are usually best
used for timing purposes or to isolate a failing launch [4].

III. RELATE WORK

Lewko and Waters [3] proposed a Multi-Authority
Attribute-Based Encryption (MAABE) system, also known as
decentralizing attribute-Based encryption, in which any party
can become an authority to issue private key and generate a
public key to different users and there is no requirement for any
global coordination. MAABE eliminates the performance
bottleneck of central authority and decentralization makes
MAABE more scalable than other systems.

Li, and Chen et al., [7] deployed parallel CP-ABE in clouds.
In order to reduce the overhead of each algorithm, they used
thread-level technology to deploy the parallel program of CP-
APE toolkits. The multi-thread strategy led the process of key
generation, encryption, and decryption to accelerate 2.28 times
to traditional methods. At the last, they built a cloud storage
model to illustrate how authentication works in cloud storage.

Shucheng Yu [8] proposed to encrypt data with ABE and
store them in untrusted storage. He showed the secure data
sharing and access control for cloud computing and wireless
sensor networks (WSNs). Muller et al., [9] provided a concept
about the distributed Attribute-Based Encryption (DABE), in
which the attributes and their corresponding private key can be
maintained by any number of parties. Li et al., [10] introduced a
method that used ABE to share vital data in cloud computing.

IV. CP-ABE CONCEPTS AND TOOLKIT

This part is mainly about CP-ABE concept and definitions.
Then the basic information about the bilinear maps will be
introduced. Final part is about current algorithm of CP-ABE,
including setup, encrypt, decrypt, and key generation.

A. CP-ABE Concept

CP-ABE was first introduced by Bethencourt et al. [1,13],
which provided fine-grained access control. In their design of
CP-ABE, a user’s private key is associated with a set of
attributes and a ciphertext specifies an access policy over a
defined universe of attributes within the system. A user will be
able to decrypt a ciphertext, if and only if his attributes satisfy
the policy of the respective ciphertext [1,13]. For example, in
Fig. 2, suppose that a company has several offices over the
country. The high-level manager wants to send one sensitive
financial statement to offices A and B. This statement has high

96

security degree, which means only the high-level managers like
Chief managers and Director of the Financial department in
local offices have certain credentials or attributes can read it.
The sender may create a special access structure for this
information: (((“Chief Managers”) OR (“Director””) AND (“A”
OR “B”)) AND ((“Financial Department”) AND ((“Manager
level > 57))). By this mean, the sensitive financial statement
should only be seen by Chief Managers or Director of Financial
Department in A or B offices, and the priority of managers
should be higher than level 5. Thus, the person who encrypts the
data doesn’t need to know the exact receivers who can read this
information, but sender only needs to create an access structure
that defines who can access these data.
Key:

MSK

PK)
| Attributes

Authority
1.5etup PK,MK
2.KeyGen(PK,MS
K Attributes)

Receiverl SoA:
Chief Manager Office A
Financial Department Level 10

ciphertext

., \\‘"
- ~— .
~ ~./ Decryptiskct) plaintext

Attributes™._ / - t

., ., [

. “-\\ /

, PKF P ., T [

Sender Encrypt(PK,M.SoA) Receiver2 SoA:

son=(("Chief Managers™) OR
("Director”) AND [“4° DR “B*}) AND Director Office B

((“Financial Department”) AND ciphertext| Financial Department
Lewvel

{(*Manager level = 5*}))

Fig. 2 CP-ABE mechanism

CP-ABE authorization mechanism is different from another
traditional public key cryptography. The ciphertext contains the
authorization, the receiver’s private key satisfies the
authorization policy can decrypt the ciphertext. Other public key
cryptography systems, the private key, and public key pair must
ready before do the encrypt operation, whereas, CP-ABE allows
sender encrypts data regardless of whether receivers have their
private key. Therefore, the sender can encrypt the plaintext
without know the receiver’s information. The sender only needs
to build a policy over a set of attributes, which define who can
access the data. Any future users can decrypt the data only when
the user key contains attributes that satisfy the defined policy.

CP-ABE users’ private keys will contain an arbitrary number
of strings, which expressed as attributes. When we encrypt a
message in CP-ABE, the sender only needs to specify the policy.
A user who wants to decrypt a ciphertext must satisfy the policy.
The policy also calls an access structure. At a mathematical level
[1,3,13], access structures in our system are described by a
monotonic access tree, where nodes of the access structure are
composed of threshold gates, and the leaves describe attributes.
We note that AND gates can be constructed as n-of- n threshold
gates, and OR gates as 1-of-n threshold gates.

B. CP-ABE Algorithm

Current CP-ABE scheme consists of four fundamental
algorithms [1,5]: Setup, Encrypt, Key Generation, and Decrypt.

Setup. The setup algorithm is the first step of CP-ABE,
the only input here is the implicit security parameter. The
outputs of setup are the public key PK and a master key MK.
PK need to be broadcasted to every user and MK is kept by an

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on May 25,2024 at 17:24:59 UTC from IEEE Xplore. Restrictions apply.

authority who maintains the system and manage the key.
Authority can use MK to generate the PK.

Key Generation (MK, S). The key generation algorithm
using MK and a set of attributes S that describe the key as its
input. The output of keygen is a private key SK, which include
the user’s attributes set.

Encrypt (PK,M, T'). The encryption algorithm computes the
message M and put the access structure tree T in ciphertext. It
uses a PK, a message M and T as input, and generate a
ciphertext CT that include the T .

Decrypt (PK; CT; SK). The three input for decryption is
public key PK, private key PK, and ciphertext CT. The PK
include a set of attributes, meanwhile, the CT contains policy
policy A. If the attributes of S satisfy the policy A , the CT can
be decrypted by this PK, the user will get plaintext M .The
decryption algorithm is a recursive function.

C. CP-ABE Toolkit

Bethencourt deployed a CP-ABE toolkit in 2006. It includes
two separate packages libbswabe and cpabe. Libbswabe is a
library contains the core crypto operations. The cpabe provides
high-level functions and user interface. Every package is open
source and under the GPL General Public License. The source
code is available on the web and can be downloaded from
Advanced Crypto Software Collection.

The current implementation uses the Pairing-Based
Cryptography (PBC) library which is a free C library and builds
on the GMP library. The purpose of the PBC library is to
provide a fast and portable library for implementation of pairing-
based cryptosystems. It allows a programmer to use their APIs
without learning the elliptic curves or other number theory.
Therefore, the programmer only needs to have basic knowledge
of pairings. However, we are not focused on PBC or any
mathematics problems. This paper focus on the procedure of
CP-ABE, and how to use GPU parallel computation to
accelerate it. The detail of CP-ABE four command line tools will
be described in subsections.

1) Cpabe-setup

Cpabe-setup functions are used for generating public
parameters and a master key. There is no input for this
command except the implicit security parameter. In most
situation, the setup function costs very short time and no
requests migrate to GPU for speedup.

2) Cpabe-keygen [1,5]

Cpabe-keygen functions’ input is MK and S that describe
the key. The first step of keygen functions is to call the
unserialized functions that unserialize the public key PK and
master key MK separately. The most time-consuming part is
paring when we run the keygen function. The total execution
time depends on the number of attributes and quantity of keys.

3) Cpabe-enc

Cpabe-enc function is the core function for CP-ABE, which
includes the encryption and paring two major parts. The inputs
of the cpabe-enc function include the public key PK, a
message M, and the access structure T [1,5]. The output of this
function is the ciphertext CT, which includes the access

97

structure, also called policy. These functions not only encrypt
the plaintext but also need to compute the policies or access
structure.

According to Fig. 3, cpabe-enc takes plaintext, public key,
and policies as inputs. Once the functions get the public key PK,
it will call the pub_unserialize function to unserialize the public
key. The policies are taken by a string. The first step is to parse
all policies, and then send the policies to simplify() function,
which is a recursive function. During this step, the function
analyzes the policies based on the “And” or “Or” threshold gate
to merge each attribute into the access tree. After the execution
of tidy() and format policy profix() functions, we get the final
policies, which are used as an argument along with unserializing
public key and element t m for function bswabe enc(). The
element t m is set to the random group element and does not
need to be initialized in this function. The bswabe enc()
function uses a random group element for encryption under the
specified access policy. The result of this function is returned
and the element t given as an argument is set to the random
group element.

Input plantext

Fig. 3 CPABE-ENC PROCEDURE

After using bswabe_enc() function, it is normal to extract the
random data in m using the PBC function, then it is used as the
key for AES encryption. The policy is specified as a simple
string which encodes a postorder traversal of threshold tree
defining the access policy. For example, "tee soda juice 20f3
snacks 1of2", which is specified as a policy with two threshold
gates and four leaves. The current version of CP-ABE does
support numerical attributes and integer comparison. If there are
errors occurred, the function will call bswabe error().
Otherwise, this function will pass m as a symmetric key for AES
encryption, generate policies string cph, serialize the string, and
then pass it as an argument for write_back_file() which is used
for ciphertext generation.

4) Cpabe-dec [5]

cpabe-dec only takes public key PK, ciphertext CT, and
private key SK, which associates with attributes. When the
private key SK’s attributes satisfy the ciphertext CT policies,
this private key can decrypt the corresponding cyphertext and
generate plaintext as the output for this function.

Fig. 4 illustrates the procedure of cpabe-dec functions. Once
the function gets all inputs, it will do unserialize for all of the
inputs, and generate ciphertext string or GbyteArray for bswabe-
dec () functions. The bswabe-dec () function decrypt the
specified ciphertext using the given private key, filling in the
provided element m which does not need to be initialized. If and
only if the private key satisfies the ciphertext policy, the bswabe-

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on May 25,2024 at 17:24:59 UTC from IEEE Xplore. Restrictions apply.

dec() functions will return true to indicate the success of
decryption.

Input ciphertext Input public key Input private key

h 4 Y
Read_cpabe_file(CT) [Suck_file{pub_key)] [Suck_file{prv_key)]
I
k4
[aes_buff] unseriali:c[cphb] [unserialize(pub_key) J [unserialize(prv_key) J
Cph_buff Pub_key Priv key

Y
—[If{ {cph=Bswabe-dec|pub,.prv cph, m,]}]<

| check_sat{cph->p, prv); |
true

spit_file (out-file)

¥
Output Plaintext

Fig. 4 CPABE-DEC PROCEDURE

After the bswabe-dec () function, aes 128 cbc_enc () takes
aes buf and m as arguments, and then conducts AES
decryption operation. When we finish the AES decryption, the
algorithm will write the file back to the disk. For the cpabe-dec,
AES also use CBC mode. Therefore, we will replace it by the
CTR mode and try to migrate it to GPU platform for speedup.

D. CP-ABE performance

After introducing the toolkit, we test the original cpabe
toolkit with some sample data sets and record the corresponding
processing time. The keygen function only need the mater key
and attributes set, we run 100 times and generate 100 private
keys. The attribute number varies from 1 to 100, which means it
is incremented by 1 for each run. The cpabe-keygen function
highly relies on the PBC library, which exhibits a linear increase
by the number of attributes. The testing results are shown in Fig.
5. As we expected, the processing time is perfectly linear with
the number of attributes.

CP-ABE Keygen Processing Time ditribution

Proceming fime {mad

e drea

Processing Time: {ma]

Fig. 5 CPABE-KEYGEN PROCESSING TIME

For cpabe-enc and cpabe-dec, we divide the processing into
steps. As we mention in the previous section, the encryption and
decryption procedures are very similar. The process time of
reading file, parsing policies, AES encryption/decryption, and

98

writing the file is recorded. We also run encryption and
decryption with different sizes of files for 100 times.

500 MB Data Set

100 MB Data Sat

10 MB Data Set

% 1%

il

& Reading Files.

= Parsing polcies

W AES encryption decrypiion

Wiriting back

Fig. 6 CPABE-ENC PROCESSING TIME DISTRIBUTION

The performance of cpabe-enc function is shown in Fig. 6.
Since we use a fixed data set, the percentage of encryption
execution time varies from 21% to 85%. When the attribute
number is incremented by one each time, the processing time for
policy will increase, whereas the encryption time remains the
same. When the data set is smaller, the policy processing time
may dominate the execution time. In contrast, when we use
bigger data set the encryption time will to dominate processing
time. The time for read and write file operations is quite
consistent.

100 MB Data Set 500 MB Data Set

10 MB Data Set

o %

\

[I

W eading public key

8 feading private key

W ilead CPARE file

® Parsing polices

W ALS encryption//decryption

 Writing back

Fig. 7 CPABE-DEC PROCESSING TIME DISTRIBUTION

For cpabe-dec, we need to load public key, private key and
cpabe ciphertext as well. The loading time for these keys is
simple and consistent. The time for loading ciphertext and
writing back plaintext is also based on the file size for a linear
increase. The policy computation for decryption is shorter than
the encryption function because the decryption only needs to
check access tree. Whenever we encrypt a file, we need to build
an access tree. This needs longer time to compute. From Fig. 7,
the decryption time is similar to the encryption time, also based
on the file size. The percentage of processing time varies from
62% to 90%.

Therefore, Fig. 6 and 7 show that the processing time
breakdown of encryption and decryption functions which
dominate the whole processing time.

V. GPU-CPABE

In order to speedup the encryption or decryption process, we
adopt NVIDIA CUDA parallel computing platform and take
advantage of GPU’s thousands of cores for bigger computation
power. The first step is to change the CBC mode of AES in the
original toolkit to the CTR mode of AES. With the counter mode
[12], each block of plaintext is XORed with an encrypted
counter that is incremented for each subsequent block. Also, all
blocks in CTR mode are totally independent to each other. The
CTR mode is popular in high-speed networks encryption

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on May 25,2024 at 17:24:59 UTC from IEEE Xplore. Restrictions apply.

because it can conduct parallelized encryption in both hardware
and software levels. Another advantage of CTR mode is
simplicity, which means CTR mode only need encryption
algorithm, but not the decryption one. The decryption method
only needs to replace plaintext to ciphertext.

Fig. 8 COUNTER MODE FOR CRYPTOGRAPHIC ALGORITHMS [12]

AES is a block cipher and use symmetric key to encrypt and
decrypt messages. AES encryption and decryption are done by
each round which is using the same logic. Each round has a
different round key that is generated by key expand() function
with the original AES key given by the user. So that we can use
CPU to compute the key in advance.

The next step we use CPU to compute the round key in
advance and store it in GPU memory. For this paper, we chose
128-bit key, means each block is 16 bytes (128 bits). We use a
4x4 matrix for encryption with the look-up table. The AES can
be divided into several steps.

1. Initialization: Key expansion is conducted on CPU in
advance. Once we get all round keys, the add round
key operation is done by XOR’ing the state with the
round key.

2. SubByes, Shift Row, and Mix column: Except the first
and the last round, other rounds in AES have four
separate operations [12]: Substitute bytes, Shift rows,
mix columns, and add round key.

Input plaintext Input public key Input palicies

—_—y Y

(

¥
[aes-128-ctr-encifile, m) }c

m

. 4
Initial AES{ m, enc, Bkey, iv)

)

m

file

[cphsBswabe-enc{pub,m,policy)]

true
Generate m and cph

. 4
[Get file length, Padding, spilt tp block]

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on May 25,2024 at 17:24:59 UTC from IEEE Xplore. Restrictions apply.

¥
[encrypl_cuda (input,outpu key, nolBleok |]

Fig. 9 CUDA CP-ABE Procedure

99

__device__ void encrypt(uint8_t *block, uint8_t *AES_key,
uint32_t offset, uint8_t col){
//add initial round_key
AddroundKey()
//run 9 rounds
for(int i = 1; i < 10; ++i){
SubBytes();
shiftRows();
MixColumns();
AddroundKey()
}
//final round
subBytes();
shiftRows();
AddroundKey();

Fig. 10 CUDA VERSION OF AES

The CUDA 128 bits CTR AES has 10 rounds in total, once
the initial round key is added, the function will run for loop nine
times and there is no mix columns in the final round.

aes-128-ctr-enc(file, m)
¥
[Initial AES| m, enc, &key, iv)]
m
¥ cudaMalloc()
[encrypt_cudalinput,cutpu,key, nofBlcok | } -[Data, round_key,and]
L3 L J
[Enpand_keyikey, round key] y v-[cudaMemepyl]]
c mepyl)
ki
[Cir_encrypt=nblock, 63 }
% | feud Pyl 5
[Write back to file J-d [Ctr_encrypt(]]

Fig. 11 CUDA Kernel Launch Procerdure

Once AES is ported to GPU, it will accelerate CP-ABE on
GPU. In cpabe-enc and cpabe-dec, main() function calls
aes_128 ctr_encrtypt() function, and takes the plaintext file
pointer and the randomly generated element number as
arguments. Once aes-128-enc() gets the arguments, it calls
initial AES() to take m and iv (initial Vector) as inputs and the
second argument in this function indicates if it is an encryption
or decryption. Before encryption or decryption, big endianness
is set up and g_byte_arrary _append() is used to make sure the
block number is an exact multiple of 16 for AES data block size
of 16 bytes. In CP-ABE we use one and zeroes padding to add
bytes of value 0x80 followed by as many zero bytes as necessary
to fill up the input for an exact multiple of 16 bytes. Once we get
input, key, and the number of blocks, we are ready to run

ecrypt_cuda ().

In encrypt cuda() function, the memory is allocated on
GPU, and all data need to be copy from CPU to GPU. Then the
GPU will launch the kernel and use all threads to compute the
data. Once all computations are done, data will be copied back
from GPU to CPU and written into files.

woid encrypt_cuda(const wintB_t *inpuy, wintB_ t *output,
AES_key *userkey, uinmtl_ t *wi, uint32_ t numbleck){

Sfeey expansion run on CPU

expond_key(userkey, rkey);

/falocate memory spoce on device

cudsMal loc(Bdblock, sizeof(uinti_t) * num_bytes);
cudaMallocifdrkey, sizeof{uintB t) * +H

cudcMallocfhdvi, sizeaf{uint8_t) * 16);
fMemcpyHostTolevice
cudeMencoy(dda (uintd2_t *}inparray, sizeof(uintB_t) * num_bytes, cudaMemcpyostToDevicel;

cudoMencpy(drkey, (wint32_t *Irkey, sizeof(uinti_t) * 1
cudeMencpy(drvi, (uint32t *Irseed, sizeof(uintd t) * 1

+ cudoMencpyostToDevice);
| . cudaMemcpyHostToDevice);
dim3d nblock((numblock + 32%64 - 1)/(32%64),128);
f#kernel launch
ctr_encrypt<<snblock, Gdee>({uint8_t *)ddata, (uintB_t *)drkey, (uintB_t *)drseed, numblock);
/#Synchronize
cudaThreadSynchronize();
FFlushstdout);
/#Copy result DeviceToHost
cudsMencpy{outorray, ddoto, sizeof(uint8_t) * num bytes, cudoMemcpyleviceToHost);
| cudaFree(dblock);

Fig. 12 Code Segment of encrypt cuda()

VI. EXPERIMENTAL RESULTS

We conducted our experiments on a local compute node
whose parameters are specified in Table 1. CP-ABE is executed
with three data sets (10MB, 100 MB and 500 MB) on CPU and
GPU for 100 times respectively. The policy computation is
linearly increased and can only run on CPU side. For these three
data sets, we did not record the policy execution time as it
dominates the whole execution time for 10 MB data. Also, the
policy computation highly relies on PBC, which is run on CPU.
Therefore, the policy computation part is ignored and the
encryption part is considered only.

Table 1 Test Platform Specification

CPU Intel Core i7 2.3 GHz
Memory 8GB DDR 3
Graphics NVIDIA GeForce GT 650M 1024MB
Disk 256 SSD
Operating System Mac OS High Sierra

The time for reading files, writing files, and encryption is
recorded. For the selected three data sets, experimental results
are listed in Table 2. It is quite clear that bigger data sets will
achieve better performance/speedup. For the 500 MB data set,
GPU speedup can reach 1.94. The detailed results of all test runs
are shown in Fig. 13. The limited performance gains come from
our local system resources. For example, we only have 1024 MB
on-chip memory for CPU. Also, for big data, if we increase the
data set to 1GB, the current algorithm will stop working.
Streaming technology has to applied to load data into and out of
memory portion by portion.

Table 2 Performance on Three Data Sets

Data 10 MB 100MB 500MB
CPU (ms) 94.49 923.99 4596.19
GPU (ms) 64.57 558.37 2369.01

Speedup 1.46 1.65 1.94

500 M DATA (ms)

Fig. 13 Performance of encrypt cuda() on 500 MB Data

VII. CONCLUSIONS

This paper focuses on the only available CP-ABE
implantation, CP-ABE Toolkit. Its deployment manners and
software structure are analyzed thoroughly. Performance
bottlenecks are identified and corresponding acceleration
strategies are developed. AES encryption and decryption are
targeted. A counter mode AES is developed and ported to GPU
platform for acceleration. Some experimental results have
demonstrated the effectiveness of our approach. The GPU-based
CP-ABE can achieve up to 1.9 times speedup on a simple laptop.

Due to the size of two containing libraries in CP-ABE
Toolkit, they have not been ported to GPU completely.
Therefore, some non-critical components are still executed on
CPU. Our future work will port the whole toolkit to GPU for the
maximum performance.

VIII. REFERENCES

[1] A.Sahai]. Bettencourtand B.Waters. Ciphertext-policy
attribute based encryp- tion. IEEE Symposium on Security
and Privacy, page 321 V334, 2007.

[2] A. Sahai and B. Waters. Fuzzy identity-based
encryption. in Proc. EUROCRYPT, page 457473, 2005.

[3] A. Lewko and B. Waters. Decentralizing attribute
based encryption. Advances in Cryptology - 30th Annual
International Conference on the Theory and Ap- plications
of Cryptographic Techniques, 2011.

[4] NVIDIA CUDA Programming Guide 10.0,
https://docs.NVIDIA.com/cuda/archive/10.0/cuda-c-
programming-guide/index.html.

[51 A. Sahai]. Bethencourt and B. Waters. The cp-abe
toolkit. http://acsc.cs.utexas.edu/cpabe/#description.

[6] NVIDIA’s KeplerTM GK110/210 Whitepaper,
https://images.NVIDIA.com/content/pdf/tesla/whitepap
er/kepler- architecture-whitepaper.pdf.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on May 25,2024 at 17:24:59 UTC from IEEE Xplore. Restrictions apply.

[7]1 Li, L, Chen, X, Jiang, H,, Li, Z,, and Lj, K.-C,, “P-CP-ABE:
parallelizing ciphertext-policy attribute-based encryption
for clouds”, 2016 17th IEEE/ACIS International Conference
on Software Engineering, Artificial Intelligence,
Networking and Parallel/Distributed Computing (SNPD),
pp. 575-580, 2016.

[81 Yu, Shucheng. Data sharing on untrusted storage with
attribute-based encryption PhD dissertation, Worcester
Polytechnic, 2010.

[9] Miiller, S., Katzenbeisser, S. and Eckert, C,
“Distributed attribute-based encryption”, International
Conference on Information Security and Cryptology, pp. 20-
36,2008.

[10] Li, M,, Yu, S, Zheng, Y., Ren, K., Lou, W.].Iou., “Scalable
and secure sharing of personal health records in cloud
computing using attribute-based encryption”, IEEE
transactions on parallel distributed systems, pp. 131-143.
V24,2013.

[11] Grama, Ananth. Introduction to parallel computing.
Pearson Education, 2003.

[12] Stallings, William-Cryptography and network security
principles and practice-seventh editon. Pearson, 2017.

[13] Goyal, Vipul, Omkant Pandey, Amit Sahai, and Brent
Waters. "Attribute-based encryption for fine-grained
access control of encrypted data." In Proceedings of the
13th ACM conference on Computer and communications
security, pp. 89-98, 2006.

101

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on May 25,2024 at 17:24:59 UTC from IEEE Xplore. Restrictions apply.

