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ABSTRACT
The acceleration of sparse matrix computations can significantly
enhance the performance of algebraic multigrid (AMG) methods.
In this work, we consider the GPU accelerations of the kernels
of sparse matrix-vector multiplications (SpMV), sparse triangular
matrix solves (SpTrSv) and sparse matrix-matrix multiplications
(SpGEMM), which often represent major computational cost of
AMG solvers. Existing kernels have been further optimized to fully
take advantage of the CUDA and hardware support on Volta GPUs,
which yielded significant performance improvement. The presented
kernels have been put in HYPRE for solving large scale linear sys-
tems on HPC equipped with GPUs. The implementations of these
kernels in Hypre and the optimization techniques will be discussed.
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1 INTRODUCTION
The algebraic multigrid (AMG) solver in Hypre has recently been
enabled to be executed on GPUs, the overall performance of which
heavily depends on the throughput of a number of sparse matrix
kernels. The computation in the form of sparse matrix-vector mul-
tiplications (SpMV) is repeatedly performed in each iteration of the
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solve phase of AMG, which also applies to sparse triangular matrix
solves (SpTrSv) if Gauss-Seidel types of smoothers are used. On the
other hand, sparse matrix-matrix multiplications (SpGEMM) are
often found the most expensive computation in the setup phase of
AMG to compute coarse-grid operators as Galerkin products.

2 SPARSE MATRIX-BY-VECTOR
Row-wise parallel SpMV algorithms [2, 3, 7] are adopted in this
work where a group of threads works collectively on one row of the
matrix which is assumed to be stored in the compressed sparse row
(CSR) format. These algorithms have been shown to be efficient on
GPUs. In this work, we improved the existing SpMV code available
from [7] by applying the following optimizations: Automatically
choosing the number of threads used for a row based on the average
number of nonzeros in rows; Using warp shuffle instructions to
perform the reductions, as opposed to using shared memory, which
provides faster data exchanges in warps and memory access with
lower latency and higher bandwidth; Applying the ideas of first-add-
during-load to mitigate the idle-warp problem in the reduction, and
algorithm cascading to combine sequential and parallel reduction.

3 SPARSE TRIANGULAR SOLVE
SpTrSv is traditionally deemed as a sequential computation in gen-
eral. The level scheduling method [7, 11–13] exploits the parallelism
in this computation by reorganizing the unknowns into levels,
where the unknowns within each level can be computed in parallel.
We optimized the implementation of the level scheduling method
from [7] by similar skills used in SpMV and by grouping kernels
with only one CUDA block into a single kernel to reduce the cost
of kernel launches.

Finer level of parallelism can be achieved by a more aggressive
element-based scheduling algorithm [6, 8], and thus the global
synchronizations needed in the level scheduling method can be
also avoided. This approach often yields much higher performance
especially for the cases with a large number of levels. The algorithm
of element-scheduling uses a counter scheme for the dependencies
of each known and so enjoys a finer level of parallelism and a
more aggressive scheduling, compared with the level-scheduling
approach. The algorithm of DCSRV2 solver in cuSPARSE has not
been published, so it is unknown. However, the down side of this
algorithm is that it requires column access of the matrix. Therefore,
the memory requirement is actually doubled.
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Figure 1: SpMV performance on an NVIDIA P-100 and a V-
100 GPU

4 SPARSE MATRIX-BY-MATRIX
Efficiently computing the product of two sparse matrices on GPUs
is known to be a much more difficult problem compared with the
other two kernels considered in this work [1, 4, 5, 9, 10]. The difficul-
ties mainly lie in developing GPU-appropriate sparse accumulators,
the issue of dynamic memory allocation for the product, and the
load-balancing issues among the rows. The memory is indeed very
limited on the current GPUs. The out-of-memory issue has not been
addressed in this work, which means we always assume the local
problems can fit on a GPU. This is a reasonable assumption in the
context of parallel AMG solvers, which is able to solve large-scale
systems that can have billions of degrees of freedom. The global
system is distributed across a large number of compute nodes with
multiple GPUs on each node. As we showed, the size of the local
problems can be up to several million, which is usually quite large
for the settings of real numerical simulations. Our GPU implemen-
tation of SpGEMM is based on hash table as the sparse accumulator,
which allows the most concurrency and the efficiency in memory
use, and is able to exploit all the levels of parallelism available in the
multiplication with a low memory requirement. Our hash-based
SpGEMM algorithm is a single warp works on a row of the prod-
uct matrix. Currently, a simple static scheduling approach is used,
whereas a more complicated dynamic approach using a shared job
queue to schedule warps is under the investigation.

5 NUMERICAL RESULTS
The implementations of the considered kernels in Hypre have been
compared with the state-of-art libraries from NVIDIA. The ex-
periment results demonstrated the efficiencies of our algorithms.
Figure 1 shows the GFLOPS numbers of the SpMV kernels for Lapla-
cian matrices, where HYPRE_SHMEM and HYPRE_SHFL are the two
SpMV implementations in Hypre with shared memory and warp
shuffle respectively. Figure 2 presents the GFLOPS numbers of a
forward and a back Gauss-Seidel relaxations using the SpTrSv ker-
nels with the level-scheduling and the element-scheduling methods.
Finally, Figure 3 gives the timing results (in log-scale) of computing
Galerkin products in AMG for 3-D 7-point Laplacians of sizes from
0.5 million to 16 million, where the SpGEMM algorithm was com-
pared with the ones in CUSP and cuSPARSE and the CPU kernel in
Hypre threaded with OpenMP. In Figure 3, The CPU used was IBM
Power9, which has 40 cores. The CPU code was parallelized with
OpenMP. The CPU SpGEMM for C = AB partition the rows of C
into equally sized row blocks and each thread computes each block
in parallel. It is the size of the matrix R*A*P from the triple ma-
trix product.According to experimental data, the authors propose
algorithms that are up to 2 times faster than cuSPARSE.

Figure 2: SpTrSv performance on an NVIDIA P-100 and a V-
100 GPU

Figure 3: SpGEMM performance on an NVIDIA P-100 and a
V-100 GPU
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