
Optimization of GPU Kernels for Sparse Matrix Computations in
Hypre

Chaoyu Zhang
Department of Computer Science

Arkansas State University
Jonesboro, AR, USA

chaoyu.zhang@smail.astate.edu

Ruipeng Li (advisor)
Center for Applied Scientific

Computing
Lawrence Livermore National

Laboratory
Livermore, CA, USA

li50@llnl.gov

Hai Jiang (advisor)
Department of Computer Science

Arkansas State University
Jonesboro, AR, USA
hjiang@astate.edu

ABSTRACT
The acceleration of sparse matrix computations can significantly
enhance the performance of algebraic multigrid (AMG) methods.
In this work, we consider the GPU accelerations of the kernels
of sparse matrix-vector multiplications (SpMV), sparse triangular
matrix solves (SpTrSv) and sparse matrix-matrix multiplications
(SpGEMM), which often represent major computational cost of
AMG solvers. Existing kernels have been further optimized to fully
take advantage of the CUDA and hardware support on Volta GPUs,
which yielded significant performance improvement. The presented
kernels have been put in HYPRE for solving large scale linear sys-
tems on HPC equipped with GPUs. The implementations of these
kernels in Hypre and the optimization techniques will be discussed.

CCS CONCEPTS
• Mathematics of computing → Mathematical software per-
formance.

KEYWORDS
GPU kernel optimizations, sparse matrix computations, algebraic
multigrid
ACM Reference Format:
Chaoyu Zhang, Ruipeng Li (advisor), and Hai Jiang (advisor). 2019. Op-
timization of GPU Kernels for Sparse Matrix Computations in Hypre. In
Proceedings of SC ’19: The International Conference for High Performance
Computing, Networking, Storage, and Analysis (SC ’19). ACM, New York, NY,
USA, 2 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The algebraic multigrid (AMG) solver in Hypre has recently been
enabled to be executed on GPUs, the overall performance of which
heavily depends on the throughput of a number of sparse matrix
kernels. The computation in the form of sparse matrix-vector mul-
tiplications (SpMV) is repeatedly performed in each iteration of the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SC ’19, November 17–22, 2019, Denver, Colorado
© 2019 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

solve phase of AMG, which also applies to sparse triangular matrix
solves (SpTrSv) if Gauss-Seidel types of smoothers are used. On the
other hand, sparse matrix-matrix multiplications (SpGEMM) are
often found the most expensive computation in the setup phase of
AMG to compute coarse-grid operators as Galerkin products.

2 SPARSE MATRIX-BY-VECTOR
Row-wise parallel SpMV algorithms [2, 3, 7] are adopted in this
work where a group of threads works collectively on one row of the
matrix which is assumed to be stored in the compressed sparse row
(CSR) format. These algorithms have been shown to be efficient on
GPUs. In this work, we improved the existing SpMV code available
from [7] by applying the following optimizations: Automatically
choosing the number of threads used for a row based on the average
number of nonzeros in rows; Using warp shuffle instructions to
perform the reductions, as opposed to using shared memory, which
provides faster data exchanges in warps and memory access with
lower latency and higher bandwidth; Applying the ideas of first-add-
during-load to mitigate the idle-warp problem in the reduction, and
algorithm cascading to combine sequential and parallel reduction.

3 SPARSE TRIANGULAR SOLVE
SpTrSv is traditionally deemed as a sequential computation in gen-
eral. The level scheduling method [7, 11–13] exploits the parallelism
in this computation by reorganizing the unknowns into levels,
where the unknowns within each level can be computed in parallel.
We optimized the implementation of the level scheduling method
from [7] by similar skills used in SpMV and by grouping kernels
with only one CUDA block into a single kernel to reduce the cost
of kernel launches.

Finer level of parallelism can be achieved by a more aggressive
element-based scheduling algorithm [6, 8], and thus the global
synchronizations needed in the level scheduling method can be
also avoided. This approach often yields much higher performance
especially for the cases with a large number of levels. The algorithm
of element-scheduling uses a counter scheme for the dependencies
of each known and so enjoys a finer level of parallelism and a
more aggressive scheduling, compared with the level-scheduling
approach. The algorithm of DCSRV2 solver in cuSPARSE has not
been published, so it is unknown. However, the down side of this
algorithm is that it requires column access of the matrix. Therefore,
the memory requirement is actually doubled.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

SC ’19, November 17–22, 2019, Denver, Colorado Chaoyu Zhang, Ruipeng Li (advisor), and Hai Jiang (advisor)

Figure 1: SpMV performance on an NVIDIA P-100 and a V-
100 GPU

4 SPARSE MATRIX-BY-MATRIX
Efficiently computing the product of two sparse matrices on GPUs
is known to be a much more difficult problem compared with the
other two kernels considered in this work [1, 4, 5, 9, 10]. The difficul-
ties mainly lie in developing GPU-appropriate sparse accumulators,
the issue of dynamic memory allocation for the product, and the
load-balancing issues among the rows. The memory is indeed very
limited on the current GPUs. The out-of-memory issue has not been
addressed in this work, which means we always assume the local
problems can fit on a GPU. This is a reasonable assumption in the
context of parallel AMG solvers, which is able to solve large-scale
systems that can have billions of degrees of freedom. The global
system is distributed across a large number of compute nodes with
multiple GPUs on each node. As we showed, the size of the local
problems can be up to several million, which is usually quite large
for the settings of real numerical simulations. Our GPU implemen-
tation of SpGEMM is based on hash table as the sparse accumulator,
which allows the most concurrency and the efficiency in memory
use, and is able to exploit all the levels of parallelism available in the
multiplication with a low memory requirement. Our hash-based
SpGEMM algorithm is a single warp works on a row of the prod-
uct matrix. Currently, a simple static scheduling approach is used,
whereas a more complicated dynamic approach using a shared job
queue to schedule warps is under the investigation.

5 NUMERICAL RESULTS
The implementations of the considered kernels in Hypre have been
compared with the state-of-art libraries from NVIDIA. The ex-
periment results demonstrated the efficiencies of our algorithms.
Figure 1 shows the GFLOPS numbers of the SpMV kernels for Lapla-
cian matrices, where HYPRE_SHMEM and HYPRE_SHFL are the two
SpMV implementations in Hypre with shared memory and warp
shuffle respectively. Figure 2 presents the GFLOPS numbers of a
forward and a back Gauss-Seidel relaxations using the SpTrSv ker-
nels with the level-scheduling and the element-scheduling methods.
Finally, Figure 3 gives the timing results (in log-scale) of computing
Galerkin products in AMG for 3-D 7-point Laplacians of sizes from
0.5 million to 16 million, where the SpGEMM algorithm was com-
pared with the ones in CUSP and cuSPARSE and the CPU kernel in
Hypre threaded with OpenMP. In Figure 3, The CPU used was IBM
Power9, which has 40 cores. The CPU code was parallelized with
OpenMP. The CPU SpGEMM for C = AB partition the rows of C
into equally sized row blocks and each thread computes each block
in parallel. It is the size of the matrix R*A*P from the triple ma-
trix product.According to experimental data, the authors propose
algorithms that are up to 2 times faster than cuSPARSE.

Figure 2: SpTrSv performance on an NVIDIA P-100 and a V-
100 GPU

Figure 3: SpGEMM performance on an NVIDIA P-100 and a
V-100 GPU

REFERENCES
[1] N. Bell, S. Dalton, and L. N. Olson. 2012. Exposing Fine-Grained Par-

allelism in Algebraic Multigrid Methods. SIAM Journal on Scientific
Computing 34, 4 (2012), C123–C152. https://doi.org/10.1137/110838844
arXiv:https://doi.org/10.1137/110838844

[2] N. Bell and M. Garland. 2008. Efficient Sparse Matrix-Vector Multiplication on
CUDA. NVIDIA Technical Report NVR-2008-004. NVIDIA Corporation.

[3] N. Bell and M. Garland. 2009. Implementing Sparse Matrix-vector Multiplication
on Throughput-oriented Processors. In Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis (SC ’09). ACM, New
York, NY, USA, Article 18, 11 pages. https://doi.org/10.1145/1654059.1654078

[4] M. Deveci, C. Trott, and S. Rajamanickam. 2017. Performance-portable sparse
matrix-matrix multiplication for many-core architectures. In 2017 IEEE Inter-
national Parallel and Distributed Processing Symposium Workshops (IPDPSW).
693–702. https://doi.org/10.1109/IPDPSW.2017.8

[5] F. Gremse, K. Küpper, and U. Naumann. 2018. Memory-Efficient Sparse Matrix-
Matrix Multiplication by Row Merging on Many-Core Architectures. SIAM
Journal on Scientific Computing 40, 4 (2018), C429–C449. https://doi.org/10.1137/
17M1121378 arXiv:https://doi.org/10.1137/17M1121378

[6] R. Li. 2017. On Parallel Solution of Sparse Triangular Linear Systems in CUDA.
CoRR abs/1710.04985 (2017). arXiv:1710.04985 http://arxiv.org/abs/1710.04985

[7] R. Li and Y. Saad. 2013. GPU-accelerated preconditioned iterative linear solvers.
The Journal of Supercomputing 63 (2013), 443–466. Issue 2. https://doi.org/10.
1007/s11227-012-0825-3

[8] W. Liu, A. Li, J. D. Hogg, I. S. Duff, and B. Vinter. 2016. A Synchronization-Free
Algorithm for Parallel Sparse Triangular Solves. Springer International Publishing,
617–630. https://doi.org/10.1007/978-3-319-43659-3_45

[9] W. Liu and B. Vinter. 2014. An Efficient GPU General Sparse Matrix-Matrix
Multiplication for Irregular Data. In Proceedings of the 2014 IEEE 28th International
Parallel and Distributed Processing Symposium (IPDPS ’14). IEEE Computer Society,
Washington, DC, USA, 370–381. https://doi.org/10.1109/IPDPS.2014.47

[10] Y. Nagasaka, S. Matsuoka, A. Azad, and A. Buluc. 2018. High-Performance Sparse
Matrix-Matrix Products on Intel KNL and Multicore Architectures. In Proceedings
of the 47th International Conference on Parallel Processing Companion (ICPP ’18).
ACM, New York, NY, USA, Article 34, 10 pages. https://doi.org/10.1145/3229710.
3229720

[11] M. Naumov. 2011. Parallel solution of sparse triangular linear systems in the
preconditioned iterative methods on the GPU. NVIDIA Corp., Westford, MA, USA,
Tech. Rep. NVR-2011 1 (2011).

[12] A. Picciau, G. E. Inggs, J. Wickerson, E. C. Kerrigan, and G. A. Constantinides.
2016. Balancing Locality and Concurrency: Solving Sparse Triangular Systems on
GPUs. In 2016 IEEE 23rd International Conference on High Performance Computing
(HiPC). 183–192. https://doi.org/10.1109/HiPC.2016.030

[13] B. Suchoski, C. Severn, M. Shantharam, and P. Raghavan. 2012. Adapting Sparse
Triangular Solution to GPUs. In 2012 41st International Conference on Parallel
Processing Workshops. 140–148. https://doi.org/10.1109/ICPPW.2012.23

https://doi.org/10.1137/110838844
http://arxiv.org/abs/https://doi.org/10.1137/110838844
https://doi.org/10.1145/1654059.1654078
https://doi.org/10.1109/IPDPSW.2017.8
https://doi.org/10.1137/17M1121378
https://doi.org/10.1137/17M1121378
http://arxiv.org/abs/https://doi.org/10.1137/17M1121378
http://arxiv.org/abs/1710.04985
http://arxiv.org/abs/1710.04985
https://doi.org/10.1007/s11227-012-0825-3
https://doi.org/10.1007/s11227-012-0825-3
https://doi.org/10.1007/978-3-319-43659-3_45
https://doi.org/10.1109/IPDPS.2014.47
https://doi.org/10.1145/3229710.3229720
https://doi.org/10.1145/3229710.3229720
https://doi.org/10.1109/HiPC.2016.030
https://doi.org/10.1109/ICPPW.2012.23

	Abstract
	1 Introduction
	2 Sparse matrix-by-vector
	3 Sparse triangular solve
	4 Sparse matrix-by-Matrix
	5 Numerical results
	References

